Epidermal growth factor receptor (EGFR) mutations play a key role in the development of a variety of cancers. Rapid detection and screening of EGFR mutation types in patients are of great significance for early treatment of patients. In this study, a highly sensitive fluorescent biosensing system based on lanthanide ion-doped multi-type upconversion nanoparticles (UCNPs) combined with polymerization reaction signal amplification was designed and constructed for the simultaneous detection of L858R and 19Del mutations. Two upconversion nanoparticles (NaYF:Yb, Er and NaYF:Yb, Tm) with unique upconversion fluorescence profiles were first prepared using Er and Tm as activators, respectively. Subsequently, the UCNPs were enriched by cDNA complementary hybridization and atom transfer radical polymerization (ATRP) reactions to enhance the signal. Next, the tDNA/cDNA hybrids were cleaved using specific restriction endonucleases to detach UCNPs aggregates from the surface of the magnetic beads. Finally, the fluorescence signal in the supernatant was detected after magnetic separation. The simultaneous quantitative detection of the two EGFR mutations was achieved by analyzing the changes in signal intensity of the characteristic upconversion fluorescence spectra of the two encoded UCNPs at their respective emission peaks. The detection range of the method was from 10 fM to 10 nM, and the detection limits were 2.44 fM for L858R and 2.13 fM for 19Del. The sensing system was able to effectively differentiate between wild-type and other mutation types, and its detection results were consistent with qPCR. The excellent performance of the sensor suggests its promising application in the diagnosis and precision treatment of NSCLC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-024-05660-8 | DOI Listing |
Sensors (Basel)
January 2025
Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China.
Mid-infrared spectral analysis has long been recognized as the most accurate noninvasive blood glucose measurement method, yet no practical compact mid-infrared blood glucose sensor has ever passed the accuracy benchmark set by the USA Food and Drug Administration (FDA): to substitute for the finger-pricking glucometers in the market, a new sensor must first show that 95% of their glucose measurements have errors below 15% of these glucometers. Although recent innovative exploitations of the well-established Fourier-transform infrared (FTIR) spectroscopy have reached such FDA accuracy benchmarks, an FTIR spectrometer is too bulky. The advancements of quantum cascade lasers (QCLs) can lead to FTIR spectrometers of reduced size, but compact QCL-based noninvasive blood glucose sensors are not yet available.
View Article and Find Full Text PDFMolecules
January 2025
College of Chemistry and Chemical Engineering, Central South University, Changsha 410017, China.
Ratiometric lanthanide coordination polymers (Ln-CPs) are advanced materials that combine the unique optical properties of lanthanide ions (e.g., Eu, Tb, Ce) with the structural flexibility and tunability of coordination polymers.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
Nanozymes, a kind of nanoparticles with enzyme-mimicking activities, have attracted considerable attention due to their robust catalytic properties, ease of preparation, and resistance to harsh conditions. By combining nanozymes with surface-enhanced Raman spectroscopy (SERS) technology, highly sensitive and selective sensors have been developed. These sensors are capable of detecting a wide range of analytes, such as foodborne toxins, environmental pollutants, and biomedical markers.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Pharmaceutical Sciences, Jilin Medical University, Jilin 132013, China.
The association between microRNAs and various diseases, especially cancer, has been established in recent years, indicating that miRNAs can potentially serve as biomarkers for these diseases. Determining miRNA concentrations in biological samples is crucial for disease diagnosis. Nevertheless, the stem-loop reverse transcription quantitative PCR method, the gold standard for detecting miRNA, has great challenges in terms of high costs and enzyme limitations when applied to clinical biological samples.
View Article and Find Full Text PDFBiomolecules
January 2025
Xingzhi College, Zhejiang Normal University, Jinhua 321100, China.
Nitrite reductases play a crucial role in the nitrogen cycle, demonstrating significant potential for applications in the food industry and environmental remediation, particularly for nitrite degradation and detection. In this study, we identified a novel nitrite reductase (NiR) from a newly isolated denitrifying bacterium, YD01. We constructed a heterologous expression system using BL21/pET28a-Nir, which exhibited remarkable nitrite reductase enzyme activity of 29 U/mL in the culture broth, substantially higher than that reported for other strains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!