AI Article Synopsis

  • Large Language Models (LLMs) are gaining attention in neurosurgery, with potential benefits, but their effectiveness across various surgical tasks remains under-researched.
  • A systematic review of literature revealed 51 articles focusing on LLM applications, notably in clinical text generation, exam question answering, and decision-making support, predominantly using models like GPT-3.5 and GPT-4.
  • While many studies utilized LLMs in a straightforward manner, there is a call for more rigorous guidelines and reproducibility in future research to fully harness their capabilities.

Article Abstract

Background: Large Language Models (LLMs) have garnered increasing attention in neurosurgery and possess significant potential to improve the field. However, the breadth and performance of LLMs across diverse neurosurgical tasks have not been systematically examined, and LLMs come with their own challenges and unique terminology. We seek to identify key models, establish reporting guidelines for replicability, and highlight progress in key application areas of LLM use in the neurosurgical literature.

Methods: We searched PubMed and Google Scholar using terms related to LLMs and neurosurgery ("large language model" OR "LLM" OR "ChatGPT" OR "GPT-3" OR "GPT3" OR "GPT-3.5" OR "GPT3.5" OR "GPT-4" OR "GPT4" OR "LLAMA" OR "MISTRAL" OR "BARD") AND "neurosurgery". The final set of articles was reviewed for publication year, application area, specific LLM(s) used, control/comparison groups used to evaluate LLM performance, whether the article reported specific LLM prompts, prompting strategy types used, whether the LLM query could be reproduced in its entirety (including both the prompt used and any adjoining data), measures of hallucination, and reported performance measures.

Results: Fifty-one articles met inclusion criteria, and were categorized into six application areas, with the most common being Generation of Text for Direct Clinical Use (n = 14, 27.5%), Answering Standardized Exam Questions (n = 12, 23.5%), and Clinical Judgement and Decision-Making Support (n = 11, 21.6%). The most frequently used LLMs were GPT-3.5 (n = 30, 58.8%), GPT-4 (n = 20, 39.2%), Bard (n = 9, 17.6%), and Bing (n = 6, 11.8%). Most studies (n = 43, 84.3%) used LLMs directly out-of-the-box, while 8 studies (15.7%) conducted advanced pre-training or fine-tuning.

Conclusions: Large language models show advanced capabilities in complex tasks and hold potential to transform neurosurgery. However, research typically addresses basic applications and overlooks enhancing LLM performance, facing reproducibility issues. Standardizing detailed reporting, considering LLM stochasticity, and using advanced methods beyond basic validation are essential for progress.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00701-024-06372-9DOI Listing

Publication Analysis

Top Keywords

large language
12
language models
12
application areas
8
llm performance
8
llms
7
llm
6
models
4
neurosurgery
4
models neurosurgery
4
neurosurgery systematic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!