Nonsteroidal anti-inflammatory drug (NSAID)-induced kidney injury is one of the most common causes of renal failure. The exact pathogenesis of NSAID induced kidney injury is not fully known and the treatment is still challenging. Artemisinin (ART) gains more attention by its potent biological activities in addition to its antimalarial effect. In our research, we evaluated the preventive and therapeutic effects of ART in Diclofenac (DIC) induced kidney injury through its effect on mitochondria and regulation of sirtuin 3 (SIRT3). Thirty adult male Sprague Dawley rats were divided into five groups: control, ART, DIC, DIC + ART prophylactic, and DIC followed + ART therapeutic groups. At the end of the study, animals were scarified and the following parameters were evaluated: serum urea and creatinine, renal malondialdehyde (MDA), superoxide dismutase (SOD) and nitrate. SIRT3 was detected by western blotting and real-time PCR. Mitochondrial related markers (PGC-1α, Drp1, and mitochondrial ATP) were detected by immunoassay. Caspase-3 and LC3 II expression in kidney tissues were demonstrated by immune-histochemical staining. The kidney specimens were stained for H&E and PAS special stain. Electron microscopy was done to detect mitochondrial morphology. ART improved renal function test, oxidative stress, SIRT3 level, mitochondrial function, LC3 II expression and decrease caspase-3. Histopathological examination confirmed ART alleviation as determined by light or electron microscopy. ART can modulate biochemical and pathological changes in DIC-induced kidney injury and can be considered a new possible therapeutic approach for DIC-induced kidney injury through its effect on SIR3 and maintenance of mitochondrial homeostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00210-024-03620-8 | DOI Listing |
J Agric Food Chem
January 2025
College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
T-2 toxin is a highly toxic fungal toxin that threatens humans and animals' health. As a major detoxifying and metabolic organ, the kidney is also a target of T-2 toxin. This article reviews T-2 toxin nephrotoxicity research progress, covering renal structure and function damage, nephrotoxicity mechanisms, and detoxification methods to future research directions.
View Article and Find Full Text PDFBackground: Urine neutrophil gelatinase-associated lipocalin (uNGAL) is a biomarker for the early diagnosis of AKI.
Objectives: To evaluate uNGAL in dogs with non-associative immune mediated hemolytic anemia (IMHA) and to evaluate whether uNGAL correlates with disease severity markers, negative prognostic indicators and outcome.
Animals: Twenty-two dogs with non-associative IMHA and 14 healthy dogs.
Sports Med Open
January 2025
Institute of Primary Care, University of Zurich, Zurich, Switzerland.
Background: Marathon training and running have many beneficial effects on human health and physical fitness; however, they also pose risks. To date, no comprehensive review regarding both the benefits and risks of marathon running on different organ systems has been published.
Main Body: The aim of this review was to provide a comprehensive review of the benefits and risks of marathon training and racing on different organ systems.
Pediatr Nephrol
January 2025
Department of Anesthesiology, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610000, Sichuan, China.
Background: Cardiac surgery-associated acute kidney injury (CSA-AKI) is a notably common complication in pediatrics, with an incidence rate ranging from 15 to 64%. This rate is significantly higher than that observed in adults. Currently, there is a lack of substantial evidence regarding the association between intraoperative blood pressure variability (BPV) during cardiac surgery with cardiopulmonary bypass (CPB) and the development of AKI in pediatric patients.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
Renal fibrosis is widely recognized as the ultimate outcome of many chronic kidney diseases. The process of epithelial-mesenchymal transition (EMT) plays a critical role in the progression of fibrosis following renal injury. UHRF1, as a critical epigenetic regulator, may play an essential role in the pathogenesis and progression of renal fibrosis and EMT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!