Ce-doped MnO mixed with polyvinylidene fluoride as an amplified ozone decomposition filter medium in humid conditions.

Environ Sci Pollut Res Int

Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada.

Published: December 2024

Ozone is a hazardous air pollutant with significant adverse effects on human health and the environment. With the growing industrial use of ozone, effective ozone removal systems have become essential, especially to protect workers' health. MnO-based catalysts offer substantial promise for ozone decomposition; however, a major challenge in their application is water molecule poisoning, particularly in high humidity conditions. This study addresses this limitation by developing a hybrid filtration medium that combines an enhanced MnO catalyst with hydrophobic polymer particles. In bench-scale tests simulating ozone filtration scenarios, MnO-based catalysts synthesized using solid interface reaction method demonstrated higher efficiency than those produced by co-precipitation method. Among the synthesized catalysts, Ce(0.1)Mn-S catalyst (a Cerium doped catalyst prepared by solid interface reaction) achieved the highest efficiency, notably under high humidity (47.5% efficiency after1 h at 10 ppm and RH = 80%, which is 1.6 times higher than other catalysts). The catalyst, however, experienced efficiency loss under prolonged exposure to humidity (22% after 6 h). To counteract this, poly(vinylidene fluoride) particles-a hydrophobic, ozone-compatible polymer-were integrated into the catalytic medium, resulting a dramatic performance boost (91.5% efficiency after 1 h and 50% after 6 h, under the aforementioned conditions) by hindering interparticle water condensation. The proposed hybrid medium is expected to offer considerable utility in diverse ozone removal settings.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-35588-6DOI Listing

Publication Analysis

Top Keywords

polyvinylidene fluoride
8
ozone decomposition
8
ozone removal
8
mno-based catalysts
8
high humidity
8
solid interface
8
interface reaction
8
ozone
7
efficiency
5
ce-doped mno
4

Similar Publications

Mitigation of irreversible membrane biofouling by CNTs-PVDF conductive composite membrane.

Environ Res

December 2024

School of Environmental Science and Engineering, Tiangong University, State Key Laboratory of Separation Membranes and Membrane Processes, Binshui West Road 399, Xiqing District, Tianjin, 300387, PR China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China. Electronic address:

Biofouling has been one of the major challenges impacting the long-term stable operation of ultrafiltration processes. Irreversible biofouling is considerably more harmful than reversible biofouling. Conductive membrane, as a new technology to effectively mitigate membrane fouling, lack research of controlling irreversible biofouling.

View Article and Find Full Text PDF

This study presents the preparation and electrochemical testing of sulfonated styrene-grafted poly(vinylidene fluoride) (pVDF) copolymers as proton exchange membranes (PEMs) for semi-organic redox flow batteries (RFBs) based on 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/bromine. The copolymers are synthesized via a two-step procedure, involving i) atom transfer radical polymerization of styrene (Sty) for the grafting to the pVDF backbone and ii) the sulfonation of the polystyrene grafted side chains. Copolymers with different amounts of sulfonated styrene (SSty) in the side chains (i.

View Article and Find Full Text PDF

Architecting highly hydratable and permeable dense Janus membrane for rapid and robust membrane distillation desalination.

Water Res

December 2024

School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, Shanghai, PR China. Electronic address:

Dense Janus membranes (JMs) are potential candidates in hypersaline wastewater treatments for membrane distillation (MD). However, dense surface layers generally add obvious membrane mass transfer resistance, limiting its practical application. In this study, a novel dense JM was facilely developed by controlled interfacial polymerization utilizing a phosphonium functional monomer (THPC) on hydrophilic polyvinylidene fluoride (PVDF) substrate.

View Article and Find Full Text PDF

The impeding ban on per- and polyfluoroalkyl substances (PFAS) prompted researchers to focus on hydrocarbon-based materials as constituents of next-generation proton exchange membranes (PEMs) for polymer electrolyte fuel cells (PEFCs). Here, we report on the fuel cell performance and durability of fluorine-lean PEMs prepared by the post-sulfonation of co-grafted α-methylstyrene (AMS) and 2-methylene glutaronitrile (MGN) monomers into preirradiated 12 µm polyvinylidene fluoride (PVDF) base film. The membranes were subjected to two distinctly different accelerated stress test (AST) protocols performed at open-circuit voltage (OCV): the US Department of Energy-similar chemical AST (90 °C, 30% relative humidity (RH), H/air, 1 bar), developed originally for perfluoroalkylsulfonic acid (PFSA) membranes, and the high relative humidity AST (80 °C, 100% RH, H/O, 2.

View Article and Find Full Text PDF

Separation of valuable materials from spent lithium-ion battery based on granulation regulation.

Waste Manag

December 2024

National Engineering Research Center of Green Recycling for Strategic Metal Resources, Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Institute of Process Engineering, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China. Electronic address:

Recycling of spent lithium-ion batteries has attracted worldwide attention to ensure sustainability of electric vehicle industry. Pretreatment as an essential step for recycling of spent LIBs is critical to ensure the recovery efficiency and quality of black mass which is used for further materials regeneration. Usually, high temperature pyrolysis, at around 600 °C is required during the pretreatment to achieve effective separation of the black mass that is binding on aluminium foils with polyvinylidene fluoride binder.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!