Reversible Electroporation for Cancer Therapy.

Br J Radiol

Department of Diagnostic and Interventional Radiology, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, LS9 7TF.

Published: November 2024

Reversible electroporation refers to the use of high voltage electrical pulses on tissues to increase cell membrane permeability. It allows targeted delivery of high concentrations of chemotherapeutic agents including cisplatin and bleomycin, a process known as electrochemotherapy (ECT). It can also be used to deliver toxic concentrations of calcium and gene therapies that stimulate an anti-tumour immune response. ECT was validated for palliative treatment of cutaneous tumours. Evidence to date shows a mean objective response rate of ∼80% in these patients. Regression of non-treated lesions has also been demonstrated, theorised to be from an in-situ vaccination effect. Advances in electrode development have also allowed treatment of deep-seated metastatic lesions and primary tumours, with safety demonstrated in vivo. Calcium electroporation and combination immunotherapy or immunogene electrotransfer is also feasible, but research is limited. Adverse events of ECT are minimal; however, general anaesthesia is often necessary, and improvements in modelling capabilities and electrode design are required to enable sufficient electrical coverage. International collaboration between preclinical researchers, oncologists and interventionalists is required to identify the most effective combination therapies, to optimise procedural factors, and to expand use, indications and assessment of reversible electroporation. Registries with standardised data collection methods may facilitate this.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bjr/tqae231DOI Listing

Publication Analysis

Top Keywords

reversible electroporation
12
electroporation cancer
4
cancer therapy
4
therapy reversible
4
electroporation refers
4
refers high
4
high voltage
4
voltage electrical
4
electrical pulses
4
pulses tissues
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Interdisciplinary Institute for Neuroscience (UMR 5297), University of Bordeaux, Bordeaux, Gironde, France.

This is a maximal intensity projection of CA1 pyramidal cell transfected with plasmid with the reporter GFP using single cell electroporation technique. In this particular case the organotypic slices were prepared from p5-7 pups in a tissue chopper (McIlwain). And maintained in MEM bases media with added glutamax with a change in 2 alternative dyas at 37°C and 5% CO for 4 days in-vitro (DIV) before electroporating with a glass pipette of 7-10mΩ resistance by applying 4 square pulses of -ve voltage of -2.

View Article and Find Full Text PDF

StarTrack: Mapping Cellular Fates with Inheritable Color Codes.

Methods Mol Biol

January 2025

Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain.

StarTrack is a powerful multicolor genetic tool designed to unravel cellular lineages arising from neural progenitor cells (NPCs). This innovative technique, based on retrospective clonal analysis and built upon the PiggyBac system, creates a unique and inheritable "color code" within NPCs. Through the stochastic integration of 12 distinct plasmids encoding six fluorescent proteins, StarTrack enables precise and comprehensive tracking of cellular fates and progenitor potentials.

View Article and Find Full Text PDF

Multicolor Cell Lineage Tracing Using MAGIC Markers Strategies.

Methods Mol Biol

January 2025

Institute for Neuroscience of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France.

Multicolor MAGIC Markers strategies are useful lineage tracing tools to study brain development at a multicellular scale. In this chapter, we describe an in utero electroporation method to simultaneously label multiple neighboring progenitors and their respective progeny using these multicolor reporters. In utero electroporation enables the introduction of any gene of interest into embryonic neural progenitors lining the brain ventricles through a simple pipeline consisting of a micro-injection followed by the application of electrical pulses.

View Article and Find Full Text PDF

Neural precursor cells (NPCs) are a group of cells with self-renewal and multi-differentiation potential. MicroRNAs are required for neurogenesis in the central nervous system (CNS). Recent reports suggest that miR-1224 is important in human CNS diseases.

View Article and Find Full Text PDF

Ferroptosis and sonodynamic therapy (SDT) are both promising therapeutic modalities, but their clinical application remains challenging due to the hypoxic tumor microenvironment and limited supply of polyunsaturated fatty acids. Developing an agent with oxygen-enhanced SDT and increased ferroptosis sensitivity is crucial for advancing tumor therapy. In this study, catalase (Cat) and Acyl-CoA synthetase long-chain family member 4 (ACSL4) highly expressed 4T1 cells were constructed lentivirus transfection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!