Live biotherapeutic products (LBPs), including engineered bacteria, are rapidly emerging as potential therapeutic interventions. These innovative therapies can serve as live in situ drug delivery platforms for the direct deposition of therapeutic payloads, including complex biologics, at sites of disease. This approach offers a platform likely to enhance therapeutic efficacy and decrease off-target side effects. LBPs also can likely be distributed at a relatively low price point, as their production can be economically scaled up. LBPs represent an exciting new means for ensuring healthy lives and promoting well-being for all ages, aligning with the World Health Organization's sustainable development goal 3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584976 | PMC |
http://dx.doi.org/10.1111/1751-7915.70057 | DOI Listing |
Bioact Mater
April 2025
State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
Biomimetic neural substitutes, constructed through the bottom-up assembly of cell-matrix modulus via 3D bioprinting, hold great promise for neural regeneration. However, achieving precise control over the fate of neural stem cells (NSCs) to ensure biological functionality remains challenging. Cell behaviors are closely linked to cellular dynamics and cell-matrix mechanotransduction within a 3D microenvironment.
View Article and Find Full Text PDFJACC Case Rep
January 2025
Department of Cardiovascular Surgery, Instituto de Neurologia e Cardiologia de Curitiba, Curitiba, Brazil.
Cyborg Bionic Syst
July 2022
State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
Biosyncretic robots, which are new nature-based robots in addition to bionic robots, that utilize biological materials to realize their core function, have been supposed to further promote the progress in robotics. Actuation as the main operation mechanism relates to the robotic overall performance. Therefore, biosyncretic robots actuated by living biological actuators have attracted increasing attention.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.
Emerging soft robots based on liquid crystal elastomers (LCEs) exhibit remarkable capabilities for large reversible shape morphing, enabling them to adapt to complex environments and perform diverse tasks such as locomotion and camouflage. Despite extensive studies, current methods for locally controlled actuation of LCE-based soft robots often involve intricate structural design, complex programming of LCEs, incorporation of multiple materials, or complex actuation methods. Here, we present a simple and efficient approach to achieve multiple deformation modes within a simply programmed LCE structure by harnessing Joule heating-induced thermal gradients across the LCE volume.
View Article and Find Full Text PDFBioData Min
January 2025
Department of Statistics, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia.
Background: This study employs a LSTM-FC neural networks to address the critical public health issue of child undernutrition in Ethiopia. By employing this method, the study aims classify children's nutritional status and predict transitions between different undernutrition states over time. This analysis is based on longitudinal data extracted from the Young Lives cohort study, which tracked 1,997 Ethiopian children across five survey rounds conducted from 2002 to 2016.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!