A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

System-wide analysis of qualitative hospital incident data: Feasibility of semi-automated content analysis to uncover insights. | LitMetric

Background: Advances in technology have increased the ease of reporting hospital incidents, resulting in large amounts of qualitative descriptive data. Health services have little experience analysing these data at scale to incorporate into routine reporting.

Objective: We aimed to explore the feasibility of applying a semi-automated content analysis (SACA) tool (Leximancerâ„¢) to qualitative descriptions of system-wide hospital incidents to provide insights into safety issues at all health service levels.

Method: Data from 1245 incidents reported across a network of hospitals in Australia were analysed using the SACA tool. Summaries were generated using a variety of techniques, including inductive and deductive approaches to extract key concepts in the data.

Results: The analysis was feasible and provided an actionable summary of the types of incidents reported in the data; the visual interface allowed users to explore the underlying text for a deeper understanding. Deductive analysis was utilised to explore specific areas of interest, and stratified analysis revealed more detailed concepts. The SACA tool was more efficient than manual processes; however, due to the context present in the incident descriptions, significant time, reading and subject matter expertise is still required to refine the analysis.

Conclusion: Semi-automated tools provide an opportunity for improving patient safety culture and practices by providing rapid content analysis of vast datasets that can be customised for specific organisational contexts and deployed at scale. Further research is required to assess usefulness with system users.

Implications: Qualitative data abound and system-wide analysis is essential to creating actionable insights.

Download full-text PDF

Source
http://dx.doi.org/10.1177/18333583241299433DOI Listing

Publication Analysis

Top Keywords

content analysis
12
saca tool
12
system-wide analysis
8
semi-automated content
8
hospital incidents
8
incidents reported
8
analysis
7
data
6
qualitative
4
analysis qualitative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!