Background: The slow breeding cycle presents a significant challenge in legume research and breeding. While current speed breeding (SB) methods promise faster plant turnover, they encounter space limitations and high costs. Enclosed environments risk pest and disease outbreaks, and supplying water and electricity remains challenging in many developing nations. Here, we propose an innovative natural speed breeding (nSB) approach to achieve two generation cycles per rabi season under natural open field conditions in chickpea. This cost-effective, environmentally friendly method offers a location-specific alternative to prevalent SB techniques.
Results: Two field experiments were conducted. First, 11-day-old fresh immature green (FIG) seeds exhibited an 80% germination rate, reducing the duration of the breeding cycle by 14%. In second, abiotic stresses such as atmospheric, nutrient, soil, and water stresses reduced the duration of the breeding cycle by 40%, 18%, 15%, and 18%, respectively. Despite the shortened generation time, we consistently obtained a minimum of 4-6 pods plant, ensuring continuity in the subsequent breeding cycle without compromising the nSB process.
Conclusion: Our investigation revealed that the combination of this location advantage (40%) with the sowing of FIG seeds (14%) enables Baramati to achieve progress from F2 to F5 in 1.5 years, with two generation cycles per rabi (cool) season. Using the nSB method can save 3 years, marking a notable reduction from the conventional six-year timeline. Moreover, incorporating the additional abiotic stresses mentioned above will further reduce the generation advancement time. Therefore, nSB accelerates generation turnover and reduces varietal improvement time at a low cost.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583528 | PMC |
http://dx.doi.org/10.1186/s13007-024-01299-9 | DOI Listing |
Elife
January 2025
John Innes Centre, Norwich Research Park, Norwich, United Kingdom.
Obligate parasites often trigger significant changes in their hosts to facilitate transmission to new hosts. The molecular mechanisms behind these extended phenotypes - where genetic information of one organism is manifested as traits in another - remain largely unclear. This study explores the role of the virulence protein SAP54, produced by parasitic phytoplasmas, in attracting leafhopper vectors.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China. Electronic address:
Heat shock proteins (Hsps) are highly conserved molecular chaperones with essential roles against biotic and abiotic stressors. A large set of co-chaperons comprising J-domain proteins (DnaJs) regulate the ATPase cycle of Hsp70s with Hsp90s, together constituting a dynamic and functionally versatile network for protein folding/unfolding and regulation. Marine bivalves could accumulate and tolerate paralytic shellfish toxins (PSTs), the well-noted neurotoxins generated during harmful algal blooms.
View Article and Find Full Text PDFOecologia
January 2025
Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, Université de Strasbourg, CNRS, 23 Rue Becquerel, 67000, Strasbourg, France.
Phenology is a major component of animals' breeding, as they need to adjust their breeding timing to match optimal environmental conditions. While the effects of shifting phenology are well-studied on populations, few studies emphasise its ecological causes and consequences at the inter-individual level. Using a 20-year monitoring of more than 2500 breeding events from ~ 500 breeding little penguins (Eudyptula minor), a very asynchronously breeding seabird, we investigated the consequences of late breeding on present and next breeding events.
View Article and Find Full Text PDFTheriogenology
December 2024
College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Changchun, 130118, China. Electronic address:
Wanxi white goose is an important male parent in crossbreeding of Chinese geese, but its short reproductive cycle restricts its application in Northeast China. Therefore, understanding the potential mechanism of breeding period regulation in Wanxi white goose will help to provide more options for crossbreeding. In this study, the reproductive period was divided into prophase (T1), metaphase (T2) and anaphase (T3) according to the laying rhythm of geese.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Crop Production and Landscape Management, Ebonyi State University, Abakaliki, Nigeria.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!