The renal lymphatic system is critical for maintaining kidney homeostasis and regulating the immune response inside the kidney. In various kidney pathological situations, the renal lymphatic network experiences lymphangiogenesis, which is defined as the creation of new lymphatic vessels. Kidney lymphangiogenesis controls immunological response inside the kidney by controlling lymphatic flow, immune cell trafficking, and immune cell regulation. Ongoing study reveals lymphangiogenesis's different architecture and functions in numerous tissues and organs. New research suggests that lymphangiogenesis in kidney disorders may regulate the renal immune response in various ways. The flexibility of lymphatic endothelial cells (LECs) improves the kidney's immunological regulatory function of lymphangiogenesis. Furthermore, current research has shown disparate findings regarding its impact on distinct renal diseases, resulting in contradictory outcomes even within the same kidney condition. The fundamental causes of the various effects of lymphangiogenesis on renal disorders remain unknown. In this thorough review, we explore the dual impacts of renal lymphangiogenesis on several kidney pathologies, with a particular emphasis on existing empirical data and new developments in understanding its immunological regulatory function in kidney disease. An improved understanding of the immunological regulatory function of lymphangiogenesis in kidney diseases might help design novel medicines targeting lymphatics to treat kidney pathologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583545 | PMC |
http://dx.doi.org/10.1186/s12967-024-05859-4 | DOI Listing |
Kidney Int Rep
December 2024
Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
Angiopoietin-2, an important contributor to angiogenesis and vascular remodeling, is increasingly recognized in kidney research. This review explores clinical insights and experimental perspectives on angiopoietin-2 in kidney diseases. Traditionally seen as an antagonist of the Tie-2, which is a receptor tyrosine kinase of endothelial cells and some hematopoietic stem cells, angiopoietin-2 exerts both proangiogenic and antiangiogenic effects, making it a versatile and context-dependent player in kidney pathophysiology.
View Article and Find Full Text PDFKidney360
December 2024
Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807, USA.
Background: Chronic kidney disease (CKD) counts acute kidney injuries (AKI) as one of its many underlying causes. Lymphatic vessels are important in modulating inflammation post-injury. Manipulating lymphatic vessel expansion thus has the potential to alter CKD progression.
View Article and Find Full Text PDFCirc Res
December 2024
Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN. (J.Z., H.-C.Y., R.L.R., E.L.S., V.K.).
Background: Lymphatic collecting vessels in the kidney are critical in clearing interstitial fluid, macromolecules, and infiltrating immune cells. Dysfunction of the lymphatic vessels can disrupt this process and exacerbate injury-associated inflammation in many disease conditions. We previously found that sodium accumulates within the kidney interstitium during proteinuric kidney injury and elevated sodium environments stimulate isolevuglandin production in antigen-presenting cells, stimulating T cells, and modulating inflammatory responses.
View Article and Find Full Text PDFJ Transl Med
November 2024
Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, China.
Arterioscler Thromb Vasc Biol
January 2025
Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL.
Background: Lymphangiogenesis is believed to be a protective response in the setting of multiple forms of kidney injury and mitigates the progression of interstitial fibrosis. To augment this protective response, promoting kidney lymphangiogenesis is being investigated as a potential treatment to slow the progression of kidney disease. As injury-related lymphangiogenesis is driven by signaling from the receptor VEGFR3 (vascular endothelial growth factor receptor 3) in response to the cognate growth factor VEGF (vascular endothelial growth factor)-C released by tubular epithelial cells, this signaling pathway is a candidate for future kidney therapeutics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!