Elocalcitol mitigates high-fat diet-induced microglial senescence via miR-146a modulation.

Immun Ageing

Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.

Published: November 2024

AI Article Synopsis

  • miR-146a regulates inflammation and is involved in high-fat diet-induced hypothalamic senescence, but its role has not been fully explored.
  • Wild-type mice on a high-fat diet showed increased body weight, cognitive decline, and senescence markers in the brain, while knocking out miR-146a exacerbated these effects.
  • Treatment with elocalcitol improved health outcomes in HFD WT mice by upregulating miR-146a and mitigating senescence effects, highlighting its therapeutic potential, which was not effective in miR-146a knockout mice.

Article Abstract

Background: MicroRNAs (miRNAs) play crucial roles in regulating inflammation and cellular senescence. Among them, miR-146a has emerged as a key modulator of inflammation, but its role in obesity-induced senescence remains unexplored. This study investigates the involvement of miR-146a in high-fat diet (HFD)-induced hypothalamic senescence and in protective effects of elocalcitol (Elo), a non-hypercalcemic, fluorinated vitamin D analog on HFD-induced senescence.

Results: Wild-type (WT) HFD-fed mice exhibited increased body weight, impaired locomotor activity, and cognitive decline compared to low-fat diet (LFD) controls. In the brain, HFD induced senescence markers (p16, p21), β-galactosidase activity (β-gal) of microglia, and increased expression of senescence associated secretory phenotype (SASP) cytokines (Il1b, Il18, Tnf, Il6) in activated hypothalamic microglia. In the liver, increased p21 and SASP cytokines were detected, although p16 and β-gal levels remained unchanged. Importantly, miR-146a expression was significantly downregulated in the hypothalamus following HFD exposure in WT mice, while miR-146a knockout (Mir146a-/-) mice subjected to HFD showed augmented hypothalamic senescence characterized by higher levels of p16, p21, and β-gal + microglial cells as compared to WT mice. The SASP profile remained similar between Mir146a-/- HFD and WT HFD mice. Among miR-146a target genes, smad4 was upregulated the hypothalamus of HFD-fed mice, with a more pronounced increase in the hypothalamus of HFD-fed Mir146a-/- mice. Further, treatment with Elo upregulated miR-146a expression in both the hypothalamus and the liver, lowered body weight and improved cognitive function, while reducing senescence markers and SASP cytokines in WT HFD mice. These effects were absent in Mir146a-/- HFD mice when treated with Elo, indicating the dependence of Elo's therapeutic efficacy on miR-146a.

Conclusion: Elocalcitol prevents development of senescence in microglia via modulation of miR-146a expression, while miR-146a provides protection against HFD-induced cellular senescence in the hypothalamus most probably via inhibition of TGF/Smad4 pathway. These findings highlight Elo and miR-146a as promising therapeutic candidates for ameliorating obesity-related neuroinflammation and senescence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583547PMC
http://dx.doi.org/10.1186/s12979-024-00485-6DOI Listing

Publication Analysis

Top Keywords

sasp cytokines
12
mir-146a expression
12
hfd mice
12
senescence
11
mir-146a
10
mice
9
senescence mir-146a
8
cellular senescence
8
hypothalamic senescence
8
hfd-fed mice
8

Similar Publications

CNPY2 modulates senescence-associated secretory phenotype in tendon stem/progenitor cells.

Tissue Cell

December 2024

Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China. Electronic address:

Age-related diseases are often linked to chronic inflammation. Senescent cells secrete inflammatory cytokines, chemokines and matrix metalloproteinases, collectively referred to as the senescence-associated secretory phenotype (SASP). The current study discovered that aging leads to the accumulation of senescent tendon stem/progenitor cells (TSPCs) in tendon tissue, resulting in the development of a SASP.

View Article and Find Full Text PDF

In cells, the term "cellular aging" represents a collection of biological changes that can precede the proliferative senescence states. Cells more resistant to proliferative senescence, such as the ones found in the basal layer of the epidermis, may also exhibit these aging patterns. Therefore, cellular aging events could be induced by endogenous signals named here as cellular aging triggers (CATs) components.

View Article and Find Full Text PDF

The Nuclear Condensates of ESE3/EHF Induce Cellular Senescence without the Associated Inflammatory Secretory Phenotype in Pancreatic Ductal Adenocarcinoma.

Cancer Lett

December 2024

Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China. Electronic address:

Senescent cells are in a stable state of cell cycle arrest, leading to a natural barrier to tumorigenesis. Senescent cells secrete a pool of molecules, including cytokines, chemokines, proteases, and growth factors, termed the senescence-associated secretory phenotype (SASP), paradoxically contributing to pro-tumorigenic processes. However, the mechanism for regulating senescence and SASP in tumor cells remains unclear.

View Article and Find Full Text PDF

Resistant starch grafted cerium-sulfasalazine infinite coordination polymers synergistically remold intestinal metabolic microenvironment for inflammatory bowel disease therapy.

J Nanobiotechnology

December 2024

Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, 450006, Henan, China.

Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease which is closely related with the overproduced reactive oxygen species (ROS), increased pro-inflammatory cytokines and disordered intestinal microbes. However, current therapeutic methods usually ignored the interrelation among the pathogenesis, and mainly focused on a single factor, inducing clinical outcomes unsatisfied. Herein, biocompatible infinite coordination polymers of drugs (Ce-SASP-RS ICPs) composed of Ce ions, FDA-approved drug sulfasalazine (SASP) and natural ingredient resistant starch (RS) were developed for synergistic treatment of IBD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!