Aims: The study attempted to determine the underlying role and regulation mechanism of 3β-hydroxysterol-Δ24 reductase (DHCR24) in the pathophysiology of cerebral small vessel disease-associated cognitive impairment (CSVD-CI). An RNA high-throughput sequencing and independent verification were conducted to identify potential circRNAs becoming the upstream regulator.
Methods: RNA sequencing was performed in whole-blood samples in cohort 1 (10 CSVD-CI and 8 CSVD with cognitively normal [CSVD-CN] patients). The DHCR24 and candidate circRNAs were verified in an independent cohort 2 (45 CSVD-CI participants and 37 CSVD-CN ones). The study also analyzed comprehensive cognitive assessments, plasma molecular index, and brain structure imaging.
Results: The expression of DHCR24 and has_circ_0015335 in whole-blood samples of CSVD-CI patients was significantly reduced compared to CSVD-CN patients in RNA sequencing and independent verification. Furthermore, the levels of DHCR24 and has_circ_0015335 were significantly related to global cognitive impairment in CSVD-CI patients. Meanwhile, DHCR24 could regulate the correlation between has_circ_0015335 expression and alterations in brain cortex in surface area, thickness, and volume in CSVD-CI patients. Additionally, hsa_circ_0015335 interacted with DHCR24 for plasma 24(S)-hydroxycholesterol levels among CSVD-CI patients.
Conclusion: Interaction between DHCR24 and hsa_circ_0015335 cognitively impaired CSVD by affecting brain cholesterol metabolism and brain structural changes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584349 | PMC |
http://dx.doi.org/10.1111/cns.70131 | DOI Listing |
JAMA Netw Open
January 2025
National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
Importance: Sleep disorders and mild cognitive impairment (MCI) commonly coexist in older adults, increasing their risk of developing dementia. Long-term tai chi chuan has been proven to improve sleep quality in older adults. However, their adherence to extended training regimens can be challenging.
View Article and Find Full Text PDFAnn Intensive Care
January 2025
School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 5/F, 3 Sassoon Road, Academic Building, Pokfulam, Hong Kong.
Objective: Evidence of the overall estimated prevalence of post-intensive care cognitive impairment among critically ill survivors discharged from intensive care units at short-term and long-term follow-ups is lacking. This study aimed to estimate the prevalence of the post-intensive care cognitive impairment at time to < 1 month, 1 to 3 month(s), 4 to 6 months, 7-12 months, and > 12 months discharged from intensive care units.
Methods: Electronic databases including PubMed, Cochrane Library, EMBASE, CINAHL Plus, Web of Science, and PsycINFO via ProQuest were searched from inception through July 2024.
Cells
January 2025
Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, 56128 Calambrone, Italy.
CLN8 and other neuronal ceroid lipofuscinoses (NCLs) often lead to cognitive decline, emotional disturbances, and social deficits, worsening with disease progression. Disrupted lysosomal pH, impaired autophagy, and defective dendritic arborization contribute to these symptoms. Using a zebrafish model, we identified significant impairments in locomotion, anxiety, and aggression, along with subtle deficits in social interactions, positioning zebrafish as a useful model for therapeutic studies in NCL.
View Article and Find Full Text PDFCells
January 2025
Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA.
Huntington's disease (HD) is an inherited neurodegenerative disease characterized by uncontrolled movements, emotional disturbances, and progressive cognitive impairment. It is estimated to affect 4.3 to 10.
View Article and Find Full Text PDFCells
December 2024
Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100054, China.
Neurovascular coupling (NVC) refers to the process of local changes in cerebral blood flow (CBF) after neuronal activity, which ensures the timely and adequate supply of oxygen, glucose, and substrates to the active regions of the brain. Recent clinical imaging and experimental technology advancements have deepened our understanding of the cellular mechanisms underlying NVC. Pathological conditions such as stroke, subarachnoid hemorrhage, cerebral small vascular disease, and vascular cognitive impairment can disrupt NVC even before clinical symptoms appear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!