STING activation by cyclic dinucleotides induces IRF3- and NF-κB-mediated gene expression in mammals, as well as lipidation of LC3B at Golgi-related membranes. While mechanisms of the IRF3 response are well understood, the mechanisms of NF-κB activation via STING remain unclear. We report here that STING activation induces linear/M1-linked ubiquitin chain (M1-Ub) formation and recruitment of the LUBAC E3 ligase, HOIP, to LC3B-associated Golgi membranes where ubiquitin is also localized. Loss of HOIP prevents formation of M1-Ub chains and reduces STING-induced NF-κB and IRF3 signaling in human THP1 monocytes and mouse bone marrow-derived macrophages, without affecting STING activation. STING-induced LC3B lipidation is not required for M1-Ub chain formation or for immune-related gene expression, but the recently reported STING function in neutralizing Golgi pH may be involved. Thus, LUBAC synthesis of M1-linked ubiquitin chains mediates STING-induced innate immune signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s44318-024-00291-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!