Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cyclooxygenase (COX) and lipoxygenase (LOX) enzymes play a pivotal role in producing pro-inflammatory eicosanoids, including prostaglandins (PGs) and leukotrienes (LTs), in the inflammation process. Mitragynine is a primary alkaloid contained in the kratom's leaves and has been reported to show anti-inflammatory activity by suppressing COX-2 mRNA translation to lowering PGs synthesis. In this study, the Kratom's alkaloid extract containing ~ 46% mitragynine was found to exhibit dual inhibition activity towards COX-2/5-LOX enzymes at concentrations below 25 ppm in the LPS-induced RAW 264.7 macrophage cells. At these levels, no cell toxicity was observed while the cells became death (e.g., 10-46% viability at 50-100 ppm) and only COX-2 inhibition activity was observed after exposed with more than 25 ppm of alkaloid extract. In contrast, the methanolic-crude extract of Kratom's leaf containing ~ 5% mitragynine showed no inhibition toward COX-2/5-LOX enzymes and did not toxic onto the cells, even after treated at 100 ppm. The alkaloid extract suppressed several antiinflammation parameters, including ROS (64% reduction at 25 ppm), NO (30% reduction at 25 ppm), TNF-α (~ 50% reduction at 25 ppm), and IL-6 production (60% reduction at 6.25 ppm). In silico molecular studies indicated strong binding affinity of Kratom alkaloids to COX-2 and 5-LOX active sites, supporting the Kratom's alkaloids to have great potential dual inhibition activity towards COX-2/5-LOX enzymes and to be developed as a safer NSAIDs with fewer side effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584675 | PMC |
http://dx.doi.org/10.1038/s41598-024-79229-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!