A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multi-Objective Safety-Enhanced Path Planning for the Anterior Part of a Flexible Ureteroscope in Robot-Assisted Surgery. | LitMetric

Multi-Objective Safety-Enhanced Path Planning for the Anterior Part of a Flexible Ureteroscope in Robot-Assisted Surgery.

Int J Med Robot

Biosensor National Special Laboratory, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.

Published: December 2024

Background: In robot-assisted flexible ureteroscopy, planning a safety-enhanced path facilitates ureteroscope reaching the target safely and quickly. However, current methods rarely consider the safety impact caused by body motion of the anterior part, such as impingement on the lumen wall and sweeping motion risk, or the method can only be used in collision-free situations.

Methods: The kinematic model of the anterior part under C-shaped and S-shaped collision bending is first analysed. Considering the newly defined impingement cost and sweeping area, the differential evolution algorithm is adopted to optimise the path in the configuration space. Experiments were performed to verify the effectiveness of the method.

Results: Compared with the competing algorithm, the proposed algorithm reduced impingement cost and sweeping area by an average of 31.0% and 8.64%. Force measurement experiments verified the rationality of the impingement cost expression.

Conclusion: The experimental results proved the feasibility of the proposed path planning algorithm.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcs.70007DOI Listing

Publication Analysis

Top Keywords

impingement cost
12
safety-enhanced path
8
path planning
8
cost sweeping
8
sweeping area
8
multi-objective safety-enhanced
4
path
4
planning anterior
4
anterior flexible
4
flexible ureteroscope
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!