Insights into the antifungal activity and mechanisms of cinnamon components against Aspergillus flavus and Penicillium citrinum.

Food Res Int

Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Published: December 2024

Fungal spoilage of food and the excessive use of chemical disinfectants serves potential adverse effects on human health and the environment. Consequently, there is a growing interest in exploring natural alternatives, particularly plant-derived antimicrobial preservatives. Cinnamon extracts are known for their antifungal activity, but most research has focused on essential oils, rarely on other bioactive components. This study assessed the antifungal activity and underlying mechanisms of four components-trans-cinnamaldehyde, cis-2-methoxycinnamic acid, coumarin, and o-methoxycinnamaldehyde-extracted from Cinnamomum cassia Presl (cinnamon) against Aspergillus flavus and Penicillium citrinum. These cinnamon components can inhibit the two fungi strains at the minimum inhibitory concentration ranged from 0.30 to 8.55 mmol/L. These components can disrupt fungal cell membranes by enhancing relative electrical conductivity and cytoplasmic content leakage, reducing ergosterol content, and increasing malondialdehyde level. Additionally, they can affect fungal cell wall integrity, leading to the leakage of alkaline phosphatase and alterations in the contents of β-1,3-glucan and chitin. Moreover, the cinnamon components influenced the activities of malate dehydrogenase, succinate dehydrogenase, as well as adenosine triphosphate levels. The observed suppression of fungal contamination in A. flavus and P. citrinum suggests that these cinnamon components as potential natural antifungal agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2024.115291DOI Listing

Publication Analysis

Top Keywords

cinnamon components
16
antifungal activity
12
aspergillus flavus
8
flavus penicillium
8
penicillium citrinum
8
fungal cell
8
cinnamon
6
components
6
insights antifungal
4
activity mechanisms
4

Similar Publications

Regulation of macrophage-mediated osteogenesis by kaempferol liposomes in trauma-induced heterotopic ossification.

Int J Pharm

January 2025

Key Laboratory of Bone Tissue Regeneration and Digital Medicine, Xuzhou Medical University, Xuzhou 221006 Jiangsu, China; Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006 Jiangsu, China. Electronic address:

Background: Heterotopic ossification (HO) is characterized by abnormal bone formation outside the skeleton following injury or inherited disease, leading to limb dysfunction and neurological deficits. Current treatment options for HO are largely ineffective.

Methods: A network pharmacological analysis was conducted to identify the active ingredients and protein targets in Astragalus and Cinnamon Twig Five-Substance Decoction (ACTFSD) on HO.

View Article and Find Full Text PDF

The SARS-CoV-2 infection has spread to various areas of the world, and the number of infected people, seriously ill people, and deaths have increased in 2020∼2023. It is important to suppress the spread of virus from infected people to non-infected people in order to prevent the disease from becoming more severe. To protect widespread of virus, flavor/fragrances composition was selected as a convenient effective material to protect the inhibition.

View Article and Find Full Text PDF

Objective: Primary tumors of the brain and a large percent of malignant brain tumors are gliomas. Gliomas comprise high-grade gliomas like glioblastoma multiforme (GBMs), many of which have mutation in the tumor suppressor p53 gene and low-grade gliomas (LGGs). LGGs can progress to GBMs due to various factors.

View Article and Find Full Text PDF

Characterization of key flavor compounds in cinnamon bark oil extracts using principal component analysis.

Food Res Int

January 2025

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

Cinnamon is a widely used spice, known for its distinctive flavor and aromatic properties. Due to its lignified structure, the release of flavor components typically requires prolonged stewing (1-2 h). To simulate the release of flavor components during stewing, this study employed corn oil for extraction, avoiding the use of organic solvents.

View Article and Find Full Text PDF

Therapeutic Potential of Cinnamon Oil: Chemical Composition, Pharmacological Actions, and Applications.

Pharmaceuticals (Basel)

December 2024

Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China.

Cinnamon oil, an essential oil extracted from plants of the genus Cinnamomum, has been highly valued in ancient Chinese texts for its medicinal properties. This review summarizes the chemical composition, pharmacological actions, and various applications of cinnamon oil, highlighting its potential in medical and industrial fields. By systematically searching and evaluating studies from major scientific databases including Web of Science, PubMed, and ScienceDirect, we provide a comprehensive analysis of the therapeutic potential of cinnamon oil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!