A review on salt-induced DNA compaction and charge inversion.

Prog Biophys Mol Biol

Department of Physics, Prithvinarayan Campus, Tribhuvan University, Pokhara, Nepal. Electronic address:

Published: November 2024

This review delves into the reversible process of DNA compaction, vital for cellular functions like replication and transcription. The study highlights how various cations assist in the condensation of DNA chains, highlighting their specificity. The impact of the ionic environment on chromatin characteristics is discussed, emphasizing the roles of mono- and divalent cations in neutralizing DNA charge and promoting compaction. Trivalent ions induce significant compaction, while divalent ions also contribute, albeit less strongly. Charge inversion, facilitated by high concentrations of multivalent counterions, affects DNA condensation dynamics. Manipulating solution pH and dielectric constant can alter charge inversion bidirectionally. The hydrophobic effect driven by organic cations plays a crucial role in DNA compaction. The review underscores the implications of charge inversion, including macroscopic phase separation and DNA precipitation, driven by the binding of cationic micelles to DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pbiomolbio.2024.11.003DOI Listing

Publication Analysis

Top Keywords

charge inversion
16
dna compaction
12
dna
8
compaction
5
charge
5
review salt-induced
4
salt-induced dna
4
compaction charge
4
inversion
4
inversion review
4

Similar Publications

Superconductivity from Domain Wall Fluctuations in Sliding Ferroelectrics.

Phys Rev Lett

December 2024

Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.

Bilayers of two-dimensional van der Waals materials that lack an inversion center can show a novel form of ferroelectricity, where certain stacking arrangements of the two layers lead to an interlayer polarization. Under an external out-of-plane electric field, a relative sliding between the two layers can occur, accompanied by an interlayer charge transfer and a ferroelectric switching. We show that the domain walls that mediate ferroelectric switching are a locus of strong attractive interactions between electrons.

View Article and Find Full Text PDF

The spiral generator, based on the principle of the electric field vector inversion, is capable of delivering repetitive high-voltage nanosecond pulses in the commercial portable pulsed x-ray source and gas switch trigger source. However, the spiral generator suffers from extremely low output efficiency, which significantly affects the compactness and accelerates the insulation film breakdown at electrode foil edges since the high charging voltage is required. A novel output efficiency improvement method for the spiral generator was proposed, implementing the permalloy film inside the passive layer to optimize internal voltage wave propagation processes during the pulser erection.

View Article and Find Full Text PDF

Here, we report the synthesis and self-assembly of a novel chiral 2,3:6,7‒naphthalenediimide-based triangular macrocycle (NDI-∆) and their chiroptical properties. The enantiomeric NDI-∆ is synthesized by condensation of (RR) or (SS)-trans-1,2-cyclohexanediamine and 2,3,6,7-naphthalenetetracarboxylic 2,3:6,7-dianhydride, in which the chirality of the macrocycles is controlled by the diamine. With the rigid outer π-surface, the macrocycle showed unique chiroptical properties and self-assembly modes.

View Article and Find Full Text PDF

Estimation of the spatial variability of the New England Mud Patch geoacoustic properties using a distributed array of hydrophones and deep learninga).

J Acoust Soc Am

December 2024

Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.

This article presents a spatial environmental inversion scheme using broadband impulse signals with deep learning (DL) to model a single spatially-varying sediment layer over a fixed basement. The method is applied to data from the Seabed Characterization Experiment 2022 (SBCEX22) in the New England Mud-Patch (NEMP). Signal Underwater Sound (SUS) explosive charges generated impulsive signals recorded by a distributed array of bottom-moored hydrophones.

View Article and Find Full Text PDF

We theoretically investigate how the intranuclear environment influences the charge of a nucleosome core particle (NCP)-the fundamental unit of chromatin consisting of DNA wrapped around a core of histone proteins. The molecular-based theory explicitly considers the size, shape, conformation, charge, and chemical state of all molecular species-thereby linking the structural state with the chemical/charged state of the system. We investigate how variations in monovalent and divalent salt concentrations, as well as pH, affect the charge distribution across different regions of an NCP and quantify the impact of charge regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!