A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fungal degradation of complex organic carbon supports denitrification in saturated woodchip bioreactors. | LitMetric

Fungal degradation of complex organic carbon supports denitrification in saturated woodchip bioreactors.

Bioresour Technol

Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, 439 Borlaug Hall, St. Paul, MN 55108, USA; BioTechnology Institute, University of Minnesota, 140 Gortner Lab, 1479 Gortner Ave., St. Paul, MN 55108, USA. Electronic address:

Published: February 2025

Woodchip bioreactor (WBR) is a promising technology for the removal of nitrate from agricultural drainage, although the performance of WBRs is dependent on the decomposition of lignocellulosic biomass and the carbon availability for microbial denitrification. Fungal species are more efficient than bacterial counterparts in driving wood decomposition; however, little is known about the fungal community structure and functions in saturated WBRs. In this study, we investigated the dynamics of the mycobiome in field-scale, constantly saturated WBRs located in Willmar, Minnesota, USA. Fungal community analysis suggested that wood-rotting fungi were abundant in WBRs, especially near their inlet locations where microbial denitrification was most active. Complex network structures of fungal hyphae associated with a decayed cavity on the woodchip surface was further evidenced by confocal and scanning electron microscopy. These results suggest that fungi play a major role in wood degradation in WBRs, thereby promoting denitrification activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.131826DOI Listing

Publication Analysis

Top Keywords

microbial denitrification
8
fungal community
8
saturated wbrs
8
fungal
5
wbrs
5
fungal degradation
4
degradation complex
4
complex organic
4
organic carbon
4
carbon supports
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!