A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine Learning Algorithms for Neurosurgical Preoperative Planning: A Scoping Review. | LitMetric

AI Article Synopsis

  • Preoperative neurosurgical planning is crucial for minimizing surgical risks and enhancing patient safety, and machine learning (ML) is increasingly being integrated into this process for its ability to analyze vast datasets and develop effective algorithms.
  • A scoping review of literature identified 8 studies on ML applications in brain and spine surgery, utilizing diverse ML technologies like convolutional neural networks and logistic regression on a patient cohort of 518.
  • The key benefits of ML include improving surgical decision-making and personalizing patient care, although challenges like algorithmic bias and lengthy processing times remain significant hurdles.

Article Abstract

Background And Objective: Preoperative neurosurgical planning is an important step in avoiding surgical complications, reducing morbidity, and improving patient safety. The incursion of machine learning (ML) in this domain has recently gained attention, given the notable advantages in processing large datasets and potentially generating efficient and accurate algorithms in patient care. We explored the evolving applications of ML algorithms in the preoperative planning of brain and spine surgery.

Methods: In accordance with the Arksey and O'Malley framework, a scoping review was conducted using 3 databases (PubMed, Embase, and Web of Science). Articles that described the use of ML for preoperative planning in brain and spine surgery were included. Relevant data were collected regarding the neurosurgical field of application, patient baseline features, disease description, type of ML technology, study's aim, preoperative ML algorithm description, and advantages and limitations of ML algorithms.

Results: Our search strategy yielded 7407 articles, of which 8 studies (5 retrospective, 2 prospective, and 1 experimental) satisfied the inclusion criteria. Clinical information from 518 patients (62.7% female; mean age: 44.8 years) was used for generating ML algorithms, including convolutional neural networks (14.3%), logistic regression (14.3%), and random forest (14.3%), among others. Neurosurgical fields of applications included functional neurosurgery (37.5%), tumor surgery (37.5%), and spine surgery (25%). The main advantages of ML included automated processing of clinical and imaging information, selection of an individualized patient surgical approach, and data-driven support for treatment decision-making. All studies reported technical limitations, such as long processing time, algorithmic bias, limited generalizability, and the need for database updating and maintenance.

Conclusions: ML algorithms for preoperative neurosurgical planning are being developed for efficient, automated, and safe treatment decision-making. However, future studies are necessary to validate their objective performance across diverse clinical scenarios. Enhancing the robustness, transparency, and understanding of ML applications will be crucial for their successful integration into neurosurgical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wneu.2024.11.048DOI Listing

Publication Analysis

Top Keywords

preoperative planning
12
machine learning
8
scoping review
8
preoperative neurosurgical
8
neurosurgical planning
8
algorithms preoperative
8
planning brain
8
brain spine
8
spine surgery
8
treatment decision-making
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!