Deep learning applied to the segmentation of rodent brain MRI data outperforms noisy ground truth on full-fledged brain atlases.

Neuroimage

Roche Pharma Research & Early Development, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland. Electronic address:

Published: December 2024

AI Article Synopsis

  • Translational magnetic resonance imaging of rodent brains is crucial for drug development, but automated image segmentation is challenging due to lower image quality compared to human MRI.
  • The study explored the effectiveness of deep learning models for segmenting rat brain images into multiple regions, using a robust method that accommodates variability in animal strain and size.
  • Among the models tested, the Attention U-Net performed best, providing accurate segmentation while minimizing the reliance on costly manual labels, and included features for uncertainty estimation and explainability for quality assurance.

Article Abstract

Translational magnetic resonance imaging of the rodent brain provides invaluable information for preclinical drug development. However, the automated segmentation of such images for quantitative analyses is limited compared to human brain imaging mainly due to the inferior anatomical contrast and the resulting less advanced registration and atlasing tools. Here, we investigated the potential of deep learning models for the segmentation of magnetic resonance images of rat brains into an entire set of multiple regions of interest (rather than individual loci), focusing on the development of a robust method that accommodates changes in the input based on differences in animal strain (genotype) and size. Manually generated labels are expensive, so we tested the ability of neural networks to learn brain structures from noisy but inexpensive registration-based labels, allowing very large datasets to be leveraged for training. We compared three distinct model architectures (U-Net, Attention-U-Net and DeepLab) by training them on a dataset of >10,000 magnetic resonance images of rat brains and found that each model was able to segment the entire brain into predefined sets of 29 and 58 regions, respectively, with the Attention U-Net achieving the best performance. The models canceled out unstructured label noise in the imperfect training data to provide smoother and more symmetric segmentations than registration-based labeling, and were more robust when presented with input variations, thus outperforming the noisy ground truth. Our pipeline also includes uncertainty estimation and an explainability mechanism, hence providing features essential for anomaly detection and quality assurance. In summary, our study shows that deep learning models do achieve accurate brain segmentation in high-throughput quantitative preclinical imaging without the need for expensive expert-generated labels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2024.120934DOI Listing

Publication Analysis

Top Keywords

deep learning
12
magnetic resonance
12
rodent brain
8
noisy ground
8
ground truth
8
learning models
8
resonance images
8
images rat
8
rat brains
8
brain
7

Similar Publications

MMFuncPhos: A Multi-Modal Learning Framework for Identifying Functional Phosphorylation Sites and Their Regulatory Types.

Adv Sci (Weinh)

January 2025

Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.

Protein phosphorylation plays a crucial role in regulating a wide range of biological processes, and its dysregulation is strongly linked to various diseases. While many phosphorylation sites have been identified so far, their functionality and regulatory effects are largely unknown. Here, a deep learning model MMFuncPhos, based on a multi-modal deep learning framework, is developed to predict functional phosphorylation sites.

View Article and Find Full Text PDF

Background: The accurate deciphering of spatial domains, along with the identification of differentially expressed genes and the inference of cellular trajectory based on spatial transcriptomic (ST) data, holds significant potential for enhancing our understanding of tissue organization and biological functions. However, most of spatial clustering methods can neither decipher complex structures in ST data nor entirely employ features embedded in different layers.

Results: This article introduces STMSGAL, a novel framework for analyzing ST data by incorporating graph attention autoencoder and multiscale deep subspace clustering.

View Article and Find Full Text PDF

Background: Digital biomarkers are increasingly used in clinical decision support for various health conditions. Speech features as digital biomarkers can offer insights into underlying physiological processes due to the complexity of speech production. This process involves respiration, phonation, articulation, and resonance, all of which rely on specific motor systems for the preparation and execution of speech.

View Article and Find Full Text PDF

PHIStruct: Improving phage-host interaction prediction at low sequence similarity settings using structure-aware protein embeddings.

Bioinformatics

January 2025

Bioinformatics Lab, Advanced Research Institute for Informatics, Computing and Networking, De La Salle University, Manila, 1004, Philippines.

Motivation: Recent computational approaches for predicting phage-host interaction have explored the use of sequence-only protein language models to produce embeddings of phage proteins without manual feature engineering. However, these embeddings do not directly capture protein structure information and structure-informed signals related to host specificity.

Results: We present PHIStruct, a multilayer perceptron that takes in structure-aware embeddings of receptor-binding proteins, generated via the structure-aware protein language model SaProt, and then predicts the host from among the ESKAPEE genera.

View Article and Find Full Text PDF

Motivation: Predicting RNA-binding proteins (RBPs) is central to understanding post-transcriptional regulatory mechanisms. Here, we introduce EnrichRBP, an automated and interpretable computational platform specifically designed for the comprehensive analysis of RBP interactions with RNA.

Results: EnrichRBP is a web service that enables researchers to develop original deep learning and machine learning architectures to explore the complex dynamics of RNA-binding proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!