Translational magnetic resonance imaging of the rodent brain provides invaluable information for preclinical drug development. However, the automated segmentation of such images for quantitative analyses is limited compared to human brain imaging mainly due to the inferior anatomical contrast and the resulting less advanced registration and atlasing tools. Here, we investigated the potential of deep learning models for the segmentation of magnetic resonance images of rat brains into an entire set of multiple regions of interest (rather than individual loci), focusing on the development of a robust method that accommodates changes in the input based on differences in animal strain (genotype) and size. Manually generated labels are expensive, so we tested the ability of neural networks to learn brain structures from noisy but inexpensive registration-based labels, allowing very large datasets to be leveraged for training. We compared three distinct model architectures (U-Net, Attention-U-Net and DeepLab) by training them on a dataset of >10,000 magnetic resonance images of rat brains and found that each model was able to segment the entire brain into predefined sets of 29 and 58 regions, respectively, with the Attention U-Net achieving the best performance. The models canceled out unstructured label noise in the imperfect training data to provide smoother and more symmetric segmentations than registration-based labeling, and were more robust when presented with input variations, thus outperforming the noisy ground truth. Our pipeline also includes uncertainty estimation and an explainability mechanism, hence providing features essential for anomaly detection and quality assurance. In summary, our study shows that deep learning models do achieve accurate brain segmentation in high-throughput quantitative preclinical imaging without the need for expensive expert-generated labels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2024.120934 | DOI Listing |
Adv Sci (Weinh)
January 2025
Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
Protein phosphorylation plays a crucial role in regulating a wide range of biological processes, and its dysregulation is strongly linked to various diseases. While many phosphorylation sites have been identified so far, their functionality and regulatory effects are largely unknown. Here, a deep learning model MMFuncPhos, based on a multi-modal deep learning framework, is developed to predict functional phosphorylation sites.
View Article and Find Full Text PDFGigascience
January 2025
School of Computer Science, Hunan University of Technology, Zhuzhou 412007, Hunan, China.
Background: The accurate deciphering of spatial domains, along with the identification of differentially expressed genes and the inference of cellular trajectory based on spatial transcriptomic (ST) data, holds significant potential for enhancing our understanding of tissue organization and biological functions. However, most of spatial clustering methods can neither decipher complex structures in ST data nor entirely employ features embedded in different layers.
Results: This article introduces STMSGAL, a novel framework for analyzing ST data by incorporating graph attention autoencoder and multiscale deep subspace clustering.
J Med Internet Res
January 2025
Knight Foundation of Computing & Information Sciences, Florida International University, Miami, FL, United States.
Background: Digital biomarkers are increasingly used in clinical decision support for various health conditions. Speech features as digital biomarkers can offer insights into underlying physiological processes due to the complexity of speech production. This process involves respiration, phonation, articulation, and resonance, all of which rely on specific motor systems for the preparation and execution of speech.
View Article and Find Full Text PDFBioinformatics
January 2025
Bioinformatics Lab, Advanced Research Institute for Informatics, Computing and Networking, De La Salle University, Manila, 1004, Philippines.
Motivation: Recent computational approaches for predicting phage-host interaction have explored the use of sequence-only protein language models to produce embeddings of phage proteins without manual feature engineering. However, these embeddings do not directly capture protein structure information and structure-informed signals related to host specificity.
Results: We present PHIStruct, a multilayer perceptron that takes in structure-aware embeddings of receptor-binding proteins, generated via the structure-aware protein language model SaProt, and then predicts the host from among the ESKAPEE genera.
Bioinformatics
January 2025
School of Artificial Intelligence, Jilin University, Jilin, China.
Motivation: Predicting RNA-binding proteins (RBPs) is central to understanding post-transcriptional regulatory mechanisms. Here, we introduce EnrichRBP, an automated and interpretable computational platform specifically designed for the comprehensive analysis of RBP interactions with RNA.
Results: EnrichRBP is a web service that enables researchers to develop original deep learning and machine learning architectures to explore the complex dynamics of RNA-binding proteins.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!