Clostridioides difficile causes a large proportion of nosocomial colon infections by producing toxins TcdA and TcdB as key virulence factors. TcdA and TcdB have analogous domain structures with a receptor-binding domain containing C-terminal combined repetitive oligopeptides (CROPs), an attractive target for the development of therapeutic antibodies. Here, we identify and characterize two potent neutralizing single-domain camelid anti-CROPsA antibodies, C4.2 and H5.2, with distinct mechanisms of action. Peptide mapping, high-resolution crystal structures and site-directed mutagenesis revealed that C4.2 and H5.2 nanobodies target the same C-terminal epitope centered on a QTIN motif, yet utilize different paratopes. Only for C4.2 is the complex geometry compatible with multisite binding using QTIN-like repeats throughout the CROPsA domain, as supported by Western blotting, ELISA, and SEC-MALS analysis. H5.2 binding is stronger and more selective for the C-terminal epitope than C4.2, although both nanobodies are sufficient to neutralize TcdA individually. The described epitope does not overlap with previously described epitopes of anti-CROPs antibodies and provides new modalities for disease treatment and diagnostics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.137910 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!