A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of ohmic heating-assisted glycation reaction on the properties of soybean protein isolate-chitosan complexes. | LitMetric

AI Article Synopsis

  • The study evaluated the effectiveness of ohmic heating (OH) compared to conventional heating in promoting glycation reactions in proteins.
  • Results showed that OH treatment significantly reduced free amino groups, altered protein structure, and improved the functional properties of soy protein isolate-chitosan complexes.
  • Key findings included increased emulsification and foaming capacities at specific electric field intensities, highlighting the potential of OH treatment for enhancing protein functionality.

Article Abstract

The purpose of this study was to investigate the progress of glycation reaction reactions by conventional heating and ohmic heating (OH) treatment, and the effect of different electric field intensities on the structure, physical and chemical and functional properties of glycosylated proteins. The findings demonstrated that OH treatment was more efficacious than conventional heating in reducing the free amino group and increasing the absorbance at 420 nm. Concurrently, the α-helix and β-sheet content of soy protein isolate (SPI)-chitosan (CS) complexes exhibited a reduction to 18.01 % and 28.67 %, respectively, while the UV absorption peak demonstrated an increase in conjunction with the escalation of electric field intensity. When the electric field intensity was 6 V/cm, the emulsification activity index and emulsion stability index of SPI-CS complexes were found to be 95.52 m/g and 55.60 min, respectively. The foaming capacity and foaming stability were found to be 148.33 % and 115.59 % respectively, while the solubility was also up to 91.37 %. Additionally, the air/water interface properties demonstrated a notable enhancement. The functional properties of the complexes were demonstrably enhanced following the application of an OH treatment. The aforementioned statement provided a theoretical foundation for the implementation of OH treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.137859DOI Listing

Publication Analysis

Top Keywords

electric field
12
glycation reaction
8
conventional heating
8
functional properties
8
field intensity
8
ohmic heating-assisted
4
heating-assisted glycation
4
properties
4
reaction properties
4
properties soybean
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!