AI Article Synopsis

  • * It is created by polymerizing AMB monomer with gelatin, crosslinking it, and embedding strontium titanate nanoparticles, resulting in a hydrogel with strong tissue adhesion and the ability to generate voltage and current through mechanical motion.
  • * In trials with mice, the SPG hydrogel significantly expedited the healing process, reducing wound size and improving skin quality, indicating its potential as an innovative tool for electrotherapy in wound care.

Article Abstract

Piezoelectric, conductive, and injectable hydrogel (SPG hydrogel) is constructed to rapidly close wounds, efficiently harvest biomechanical energy from animal motion, and generate electrical stimulation for electrotherapy of wound healing. 3-amino-4-methoxybenzoic acid (AMB) monomer was polymerized and grafted onto the gelatin, which was further crosslinked using EDC/NHS and embedded with strontium titanate nanoparticles (80.5 wt%), forming SPG hydrogel. This SPG hydrogel had high tissue adhesion ability, and could generate the output voltage (maximum output voltage 1 V) and current (maximum output current 0.5 nA) upon mechanical bending, promoting NIH-3T3 cell migration and proliferation. Upon application to the mice wound model, the SPG hydrogel rapidly closed the skin wound, smoothed the wound's appearance, reduced the remaining wound size, and increased epidermal thickness, demonstrating remarkable wound healing capabilities. This study suggests that the body motion-promoted electrotherapy offers a promising strategy for wound healing. STATEMENT OF SIGNIFICANCE: Piezoelectric nanomaterials are often incorporated into hydrogels to create piezoelectric hydrogels for wound healing. However, piezoelectric nanomaterials tend to agglomerate within the hydrogel matrix, and the hydrogel's low conductivity hinders efficient electron transfer. Together, both factors significantly reduce the piezoelectric effect. In this study, we developed an SPG hydrogel to improve the homogeneity and conductivity of the piezoelectric hydrogel. We first designed a conductive PG hydrogel and then immoblized piezoelectric STO nanoparticles within its matrix through coordination chemistry. Upon mechanical deformation, the uniformly distributed STO nanoparticles can generate electricity, which can efficiently transfer through the conductive matrix to the hydrogel's surface. This design shows great potential for wound healing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2024.11.028DOI Listing

Publication Analysis

Top Keywords

wound healing
24
spg hydrogel
20
wound
9
hydrogel
9
piezoelectric conductive
8
conductive injectable
8
electrical stimulation
8
hydrogel spg
8
output voltage
8
maximum output
8

Similar Publications

Liquid-nano-liquid interface-oriented anisotropic encapsulation.

Proc Natl Acad Sci U S A

January 2025

Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.

Emulsion interface engineering has been widely employed for the synthesis of nanomaterials with various morphologies. However, the instability of the liquid-liquid interface and uncertain interfacial interactions impose significant limitations on controllable fabrications. Here, we developed a liquid-nano-liquid interface-oriented anisotropic encapsulation strategy for fabricating asymmetric nanohybrids.

View Article and Find Full Text PDF

Identifying why complex tissue regeneration is present or absent in specific vertebrate lineages has remained elusive. One also wonders whether the isolated examples where regeneration is observed represent cases of convergent evolution or are instead the product of phylogenetic inertia from a common ancestral program. Testing alternative hypotheses to identify genetic regulation, cell states, and tissue physiology that explain how regenerative healing emerges in some species requires sampling multiple species among which there is variation in regenerative ability across a phylogenetic framework.

View Article and Find Full Text PDF

Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.

View Article and Find Full Text PDF

Aims: The purpose of this systematic review was to assess the safety and effectiveness of beta antagonists for improving clinical care in burn patients, compared to placebo.

Methods: Articles from randomized-controlled trials were identified by a literature search on PubMed and Cochrane. We included relevant trials involving patients with burn.

View Article and Find Full Text PDF

Ankle fractures are among the most common bone injuries, which are often accompanied by soft tissue injuries. Proper management of these fractures is crucial to promote healing and minimize complications. This study explores the effects of 2 treatment methods for ankle fractures: open reduction and internal fixation and manual reduction followed by plaster external fixation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!