Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Glioblastoma (GBM) is a highly aggressive brain cancer with poor clinical outcome. Unfortunately, chemotherapy with temozolomide (TMZ) has a limited efficacy due to resistance mainly attributed to O6-methylguanine methyl transferase (MGMT) activity. Recently, miR-603 and miR-221 have been identified to target MGMT, thus improving the efficacy of temozolomide (TMZ) in the treatment of GBM. Previously, self-assembling nanoparticles (SANPs) have been proposed to deliver miRNAs into the brain. Here, SANP co-encapsulating miRNA-603 (miR-603) and miRNA-221 (miR-221) have been developed to enhance the efficacy of TMZ in the treatment of GBM by preventing the occurrence of chemoresistance. Preliminarily, SANPs encapsulating miRNAs were optimized in terms of lipid composition to assure physical stability and no hemolytic activity. Subsequently, SANPs with the lowest cytotoxicity and excellent internalization efficiency of miRNAs were selected through MTT assay and real-time PCR, respectively. To evaluate a potential synergistic effect between TMZ and miRNAs, MTT and clonogenic assays were performed. In our biological model, miRNA delivery via SANPs in combination with TMZ treatment strongly reduced cell viability and tumorigenic potential. Finally, in vivo assays were carried out on orthotopic xenograft mouse models. The treatment with SANPs encapsulating both miRNAs in combination with TMZ greatly decreased tumour growth, and even more significantly increased animal survival. In conclusion, this strategy provides the rationale for the development of new therapeutic approaches based on SANP technology to deliver miRNAs that play a key role in suppressing tumour.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2024.11.039 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!