Unraveling the tumor-initiating cells in hepatocellular carcinoma.

Cancer Cell

Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong. Electronic address:

Published: December 2024

Aggressive features of hepatocellular carcinoma (HCC) are highly related to liver tumor-initiating cells (TICs), which are heterogeneous and plastic. In this issue of Cancer Cell, Yang et al. reveal the ability of CD49f-high TICs in shaping the tumor immunosuppressive microenvironment in HCC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ccell.2024.10.018DOI Listing

Publication Analysis

Top Keywords

tumor-initiating cells
8
hepatocellular carcinoma
8
unraveling tumor-initiating
4
cells hepatocellular
4
carcinoma aggressive
4
aggressive features
4
features hepatocellular
4
carcinoma hcc
4
hcc highly
4
highly liver
4

Similar Publications

Chemoresistance in Pancreatic Cancer: The Role of Adipose-Derived Mesenchymal Stem Cells and Key Resistance Genes.

Int J Mol Sci

January 2025

Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary.

Drug resistance is a significant challenge in pancreatic ductal adenocarcinoma (PDAC), where stromal elements such as adipose-derived mesenchymal stem cells (ASCs) contribute to a chemoresistant tumor microenvironment (TME). This study explored the effects of oxaliplatin (OXP) and 5-fluorouracil (5-FU) on PDAC cells (Capan-1) and ASCs to investigate the mechanisms of chemoresistance. While OXP and 5-FU reduced Capan-1 viability in a dose- and time-dependent manner, ASCs demonstrated high resistance, maintaining > 90% viability even at cytotoxic doses.

View Article and Find Full Text PDF

MicroRNA (miR)-126 is frequently downregulated in malignancies, including breast cancer (BC). Despite its tumor-suppressive role, the mechanisms underlying miR-126 deregulation in BC remain elusive. Through silencing experiments, we identified Early B Cell Factor 1 (EBF1), ETS Proto-Oncogene 2 (ETS2), and Krüppel-Like Factor 2 (KLF2) as pivotal regulators of miR-126 expression.

View Article and Find Full Text PDF

Ovarian cancer (OC) is the second most common female reproductive cancer and the most lethal gynecological malignancy worldwide. Most human OCs are characterized by high rates of drug resistance and metastasis, leading to poor prognosis. Improving the outcomes of patients with relapsed and treatment-resistant OC remains a challenge.

View Article and Find Full Text PDF

The Significance of Aldehyde Dehydrogenase 1 in Cancers.

Int J Mol Sci

December 2024

Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.

The goal of this paper is to discuss the role of ALDH isozymes in different cancers, review advances in ALDH1-targeting cancer therapies, and explore a mechanism that explains how ALDH expression becomes elevated during cancer development. ALDH is often overexpressed in cancer, and each isoform has a unique expression pattern and a distinct role in different cancers. The abnormal expression of ALDHs in different cancer types (breast, colorectal, lung, gastric, cervical, melanoma, prostate, and renal) is presented and correlated with patient prognosis.

View Article and Find Full Text PDF

Definitive chemoradiotherapy (CRT) is a cornerstone of treatment for locoregionally advanced head and neck cancer (HNC). Research is ongoing on how to improve the tumor response to treatment and limit normal tissue toxicity. A major limitation in that regard is the growing occurrence of intrinsic or acquired treatment resistance in advanced cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!