Protein phosphorylation is a highly prevalent post-translational modification that holds a vital position in numerous physiological processes. Prior to mass spectrometry detection, the enrichment of phosphopeptides is critically significant due to their susceptibility to interference from abundant non-phosphopeptides. In this study, the magnetic nanocomposite (FeO@NE@PL) was successfully synthesized and characterized. FeO@NE@PL exhibited strong hydrophilicity, electrophilicity and intermolecular interactions through hydrogen bonds, enabling it to effectively enrich phosphopeptides with excellent sensitivity (0.4 fmol β-casein) and selectivity (β-casein:BSA=1:1000). In addition, FeO@NE@PL was successfully applied to enrich phosphopeptides from complex real biological samples such as human serum and saliva, achieving up to 4 recycles with favorable stability and reusability. This study demonstrates that FeO@NE@PL is a promising adsorbent for phosphopeptides enrichment in proteomics research, providing new ideas for the construction of magnetic enrichment materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2024.465539 | DOI Listing |
Methods Mol Biol
December 2024
Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
Protein phosphorylation is an important post-translational modification that regulates almost all cellular processes, such as cellular metabolism, growth, differentiation, signal transduction, and gene regulation. Mass spectrometry, which acts as an automated and sensitive method, enables global analysis of protein phosphorylation. However, several technical challenges need to be addressed when analyzing protein phosphorylation in a global manner.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China.
Phosphopeptide enrichment methods based on commercial TiO suffer from difficulties in regulating intermolecular interactions, resulting in low coverage rate and the loss of information on multiphosphorylation sites, thereby limiting comprehensive phosphoproteomic analysis. In this work, MXene TiCT was incorporated into the design of enrichment materials, with its surface structure functionalized and regulated to address the low elution efficiency of TiO for multiphosphorylated peptides. Upon oxidation treatment, the TiCT material formed numerous uniformly distributed TiO nanoparticles on the surface of TiCT-O, providing abundant affinity sites (Ti-O) for selective phosphopeptide enrichment.
View Article and Find Full Text PDFAnalyst
December 2024
Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
The analysis of protein phosphorylation and glycosylation is critical for investigating disease development. In this work, 1,2-epoxy-5-hexene and ,-methylenebisacrylamide were polymerized with vinyl phosphate to produce a polymer (denoted as PVME), which contained a variety of hydrophilic groups. The material's hydrophilicity was further enhanced by a ring-opening reaction with cysteine (the product was denoted as Cys-PVEM).
View Article and Find Full Text PDFJ Chromatogr A
January 2025
College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:
Protein phosphorylation is a highly prevalent post-translational modification that holds a vital position in numerous physiological processes. Prior to mass spectrometry detection, the enrichment of phosphopeptides is critically significant due to their susceptibility to interference from abundant non-phosphopeptides. In this study, the magnetic nanocomposite (FeO@NE@PL) was successfully synthesized and characterized.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Key Laboratory of Phytochemistry and Natural Medicines. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, PR China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!