This study aims to investigate the inhibition of myricetin on heterocyclic aromatic amines (HAAs) formation in glucose/creatine (creatinine)/amino acid simulated system and Cantonese mooncakes, and elucidate the mechanism by which myricetin inhibits HAAs and analyze its impact on sensory quality of mooncakes. Results demonstrated 0.2 mmol myricetin inhibited six HAAs by 43.7 % to 85.6 % in simulated system. The significant scavenging effect of myricetin on HAAs intermediates and free radicals suggested that it inhibits HAAs formation by forming adducts with Strecker aldehydes, thereby reducing small molecule aldehydes and scavenging free radicals. In Cantonese mooncakes, 0.5 % myricetin inhibited nine HAAs formation by 54.4 % to 81.8 %. The presence of myricetin-phenylacetaldehyde adducts confirmed myricetin inhibited HAAs formation by capturing reactive intermediates. Importantly, 0.2 % myricetin enhanced umami and richness without compromising their texture in mooncakes. This research provides a theoretical foundation and technical support for developing strategies to effectively inhibit HAAs generation, thus advancing food safety.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.142084 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!