Flexible photonic materials derived from cellulose nanocrystals (CNCs) have attracted significant attention, particularly in multifunctional sensors, intelligent detection, and anti-counterfeiting applications. However, the major bottleneck with traditional CNC photonic materials is the provision of flexibility and multifunctional properties which often comes with compromises in optical properties. To address these challenges, we incorporated organosolv lignin nanoparticles (LNPs) and polyethylene glycol (PEG) into CNC films. LNPs were produced from sugarcane bagasse using various solvents, resulting in nanoparticles with distinct structural and chemical properties, such as different sizes and surface chemistries. The addition of LNPs and PEG to CNC films led to enhanced flexibility, strong iridescence, improved thermal stability and superior UV-blocking performance. Interestingly, the intercalation of LNPs significantly improved the strain at break by 89.6 % with slight increase of 7.7 % and 23.1 % in tensile strength and young's modulus respectively. Additionally, distinguished UV-blockage performance of up to 99.9 % in the UVB region and 94 % in the UVA region was also achieved in CNC-LNP-PEG films. The films exhibited varying responses to several organic solvents and HCl gas with reversible color changes. These responses were attributed to the distinct surface chemistries of the LNPs, which influenced their interactions with the CNC matrix through mechanisms such as hydrogen bonding and hydrophobic interactions. This study highlights the potential of CNC-LNP-PEG composite films for advanced applications in chemical safety and anti-counterfeiting measures, demonstrating the importance of composite formulation and processing conditions in achieving desirable properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.11.143 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
Saha's Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj, India.
The present study demonstrates the applicability of non-destructive and rapid spectroscopic techniques, specifically laser-induced fluorescence, ultraviolet-visible, and confocal micro-Raman spectroscopy, as non-invasive, eco-friendly, and robust multi-compound analytical methods for assessing biochemical changes in maize seedling leaves resulting from the treatment of aluminium oxide nanoparticles. The recorded fluorescence spectrum of the leaves shows that the treatment of different concentration of aluminium oxide nanoparticles decreases the chlorophyll content as observed by the increase in fluorescence emission intensity ratio (FIR = I/I). The analysis of ultraviolet-visible absorption measurements reveals that the amount of chlorophyll a, chlorophyll b, total chlorophyll and carotenoid decrease for treated plants with respect to untreated seedlings.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA)State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China. Electronic address:
Lignin is a natural phenolic polymer characterized with renewable, sustainable and biocompatible, but yet remain underutilized. In the post-pandemic era, people are conventionally reusing mask but without any disinfections to prevent infection of virus in public places, which could lead to accumulation of bacteria and secondary infections. The development of antibacterial mask from lignin would simultaneously address the hygiene issues of used mask due to microbe accumulation and provide novel approach for lignin valorization.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Composites and Nanocomposites Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, Rabat 10100, Morocco; Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, 43150 Ben Guerir, Morocco. Electronic address:
AMB Express
December 2024
Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, El Cerrillo Piedras Blancas, 50295, Toluca, Estado de México, Mexico.
Reducing greenhouse gas (GHG) emissions from livestock is a crucial step towards mitigating the impact of climate change and improving environmental sustainability in agriculture. This study aimed to evaluate the effects of Yucca schidigera extract, chitosan, and chitosan nanoparticles as feed additives on in vitro GHG emissions and fermentation profiles in ruminal fluid from bulls. Total gas, CH, CO, and HS emissions (up to 48 h), rumen fermentation profiles, and CH conversion efficiency were measured using standard protocols.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, PR China. Electronic address:
Conductive hydrogels have been showcased with substantial potential for soft wearable devices. However, the tedious preparation process and poor trade-off among overall properties, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!