Introduction to machine learning potentials for atomistic simulations.

J Phys Condens Matter

Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom.

Published: December 2024

Machine learning potentials have revolutionised the field of atomistic simulations in recent years and are becoming a mainstay in the toolbox of computational scientists. This paper aims to provide an overview and introduction into machine learning potentials and their practical application to scientific problems. We provide a systematic guide for developing machine learning potentials, reviewing chemical descriptors, regression models, data generation and validation approaches. We begin with an emphasis on the earlier generation of models, such as high-dimensional neural network potentials and Gaussian approximation potentials, to provide historical perspective and guide the reader towards the understanding of recent developments, which are discussed in detail thereafter. Furthermore, we refer to relevant expert reviews, open-source software, and practical examples-further lowering the barrier to exploring these methods. The paper ends with selected showcase examples, highlighting the capabilities of machine learning potentials and how they can be applied to push the boundaries in atomistic simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ad9657DOI Listing

Publication Analysis

Top Keywords

machine learning
20
learning potentials
20
atomistic simulations
12
introduction machine
8
potentials
7
learning
5
potentials atomistic
4
machine
4
simulations machine
4
potentials revolutionised
4

Similar Publications

Background: Recent studies suggest a connection between immunoglobulin light chains (IgLCs) and coronary heart disease (CHD). However, current diagnostic methods using peripheral blood IgLCs levels or subtype ratios show limited accuracy for CHD, lacking comprehensive assessment and posing challenges in early detection and precise disease severity evaluation. We aim to develop and validate a Coronary Health Index (CHI) incorporating total IgLCs levels and their distribution.

View Article and Find Full Text PDF

Comprehensive analysis of scRNA-seq and bulk RNA-seq reveals the non-cardiomyocytes heterogeneity and novel cell populations in dilated cardiomyopathy.

J Transl Med

January 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China.

Background: Dilated cardiomyopathy (DCM) is one of the most common causes of heart failure. Infiltration and alterations in non-cardiomyocytes of the human heart involve crucially in the occurrence of DCM and associated immunotherapeutic approaches.

Methods: We constructed a single-cell transcriptional atlas of DCM and normal patients.

View Article and Find Full Text PDF

Background: The diagnosis and treatment of epilepsy continue to face numerous challenges, highlighting the urgent need for the development of rapid, accurate, and non-invasive methods for seizure detection. In recent years, advancements in the analysis of electroencephalogram (EEG) signals have garnered widespread attention, particularly in the area of seizure recognition.

Methods: A novel hybrid deep learning approach that combines feature fusion for efficient seizure detection is proposed in this study.

View Article and Find Full Text PDF

Background: The progression and severity of periodontitis (PD) are associated with the release of extracellular vesicles by periodontal tissue cells. However, the precise mechanisms through which exosome-related genes (ERGs) influence PD remain unclear. This study aimed to investigate the role and potential mechanisms of key exosome-related genes in PD using transcriptome profiling at the single-cell level.

View Article and Find Full Text PDF

Background: Machine learning (ML) is increasingly used to predict clinical deterioration in intensive care unit (ICU) patients through scoring systems. Although promising, such algorithms often overfit their training cohort and perform worse at new hospitals. Thus, external validation is a critical - but frequently overlooked - step to establish the reliability of predicted risk scores to translate them into clinical practice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!