A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Diffusion equation quantification: selective enhancement algorithm for bone metastasis lesions in CT images. | LitMetric

Diffusion equation (DE) imaging processing is promising to enhance images showing lesions of bone metastasis (LBM). The Perona-Malik diffusion (PMD) model, which has been widely used and studied, is an anisotropic diffusion processing method to denoise or extract objects from an image effectively. However, the smoothing characteristics of PMD or its related method hinder extraction and enhancement of soft tissue regions of medical image such as computed tomography (CT), typically leaving an indistinct region with ambient tissues. Moreover, PMD expands the border region of the objects. A novel diffusion methodology must be used to enhance the LBM region effectively.For this study, we originally developed a DE quantification (DEQ) method that uses a filter function to selectively provide modulated diffusion according to the original locations of objects in an image. The structural similarity index measure (SSIM) and Lie derivative image analysis-value map were used to evaluate image quality and processing.We determined superellipse function with its ordern=4as a better performing filter for the LBM region. DEQ was found to be more effective at contrasting LBM for various LBM CT images than PMD or its improved models when the filter was a positive exponential similar function. DEQ yields enhancement agreeing with the indications of positron emission tomography despite complex LBM comprising osteoblastic, osteoclastic, mixed tissues, and metal artifacts, which is innovative. Moreover, DEQ retained high quality of image (SSIM> 0.95), and achieved a low mean value of the-value (<0.001), indicative of our intended selective diffusion compared to other PMD models.Our method improved the visibility of mixed tissue lesions, which can assist computer visional framework and can help radiologists to produce accurate diagnose of LBM regions which are frequently overlooked in radiology findings because of the various degrees of visibility in CT images.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ad965cDOI Listing

Publication Analysis

Top Keywords

diffusion equation
8
bone metastasis
8
objects image
8
lbm region
8
diffusion
6
lbm
6
image
6
equation quantification
4
quantification selective
4
selective enhancement
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!