Recently, all-oxide ferroelectric tunnel junctions, with single or composite potential barriers based on SrRuO/BaTiO/SrTiO(SRO/BTO/STO) perovskites, have drawn a particular interest for high density low power applications, due to their highly tunable transport properties and device scaling down possibility to atomic size. Here, using first principles calculations and the non-equilibrium Green's functions formalism, we explore the electronic structure and tunneling transport properties in magnetoelectric SRO/BTO/STO/SRO interfaces, (= 0, 2, or 4 unit cells), considering both the RuOoctahedra tilts and magnetic SRO electrodes. Our main results may be summarized as follows: (i) the band alignment schemes predict that polarization direction may determine both Schottky barrier or Ohmic contacts for(STO) = 0, but only Schottky contacts for(STO) = 2 and 4 junctions; (ii) the tunnel electroresistance and tunnel magnetoresistance ratios are evaluated at 0 and 300 K; (iii) the most magnetoelectric responsive interfaces are obtained for the(STO) = 2 heterostructure, this system also showing co-existent giant tunnel electroresistance and tunnel magnetoresistance effects; (iv) the interfacial magnetoelectric coupling is not strong enough to control the tunnel magnetoresistance by polarization switching, in spite of significant SRO ferromagnetism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ad960f | DOI Listing |
Adv Mater
January 2025
State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
Large low-field magnetoresistance (LFMR, < 1 T), related to the spin-disorder scattering or spin-polarized tunneling at boundaries of polycrystalline manganates, holds considerable promise for the development of low-power and ultrafast magnetic devices. However, achieving significant LFMR typically necessitates extremely low temperatures due to diminishing spin polarization as temperature rises. To address this challenge, one strategy involves incorporating Ruddlesden-Popper structures (ABO):AO, which are layered derivatives of perovskite structure capable of potentially inducing heightened magnetic fluctuations at higher temperatures.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Thuwal 23955-6900, Saudi Arabia.
Employing density functional theory for ground state quantum mechanical calculations and the non-equilibrium Green's function method for transport calculations, we investigate the potential of CdS, ZnS, CdZnS, and ZnCdS as tunnel barriers in magnetic tunnel junctions for spintronics. Based on the finding that the valence band edges of these semiconductors are dominated by p orbitals and the conduction band edges by s orbitals, we show that symmetry filtering of the Bloch states in magnetic tunnel junctions with Fe electrodes results in high tunneling magnetoresistances and high spin-polarized current (up to two orders of magnitude higher than in the case of the Fe/MgO/Fe magnetic tunnel junction).
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China.
Tunnel magnetoresistance (TMR) sensors, known for their high sensitivity, efficiency, and compact size, are ideal for detecting weak currents, particularly leakage currents in smart grids. However, temperature variations can negatively impact their accuracy. This work investigates the effects of temperature variations on measurement accuracy.
View Article and Find Full Text PDFAdv Mater
January 2025
Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa, 252-5258, Japan.
Twistronics, a novel engineering approach involving the alignment of van der Waals (vdW) integrated two-dimensional materials at specific angles, has recently attracted significant attention. Novel nontrivial phenomena have been demonstrated in twisted vdW junctions (the so-called magic angle), such as unconventional superconductivity, topological phases, and magnetism. However, there have been only few reports on integrated vdW layers with large twist angles θ, such as twisted interfacial Josephson junctions using high-temperature superconductors.
View Article and Find Full Text PDFSci Rep
January 2025
College of Science, Xuchang University, Xuchang, 461000, China.
Spin and valley polarizations (P and P) and tunneling magnetoresistance (TMR) are demonstrated in the ferromagnetic/barrier/normal/barrier/ferromagnetic WSe junction, with the gate voltage and off-resonant circularly polarized light (CPL) applied to the two barrier regions. The minimum incident energy of non-zero spin- and valley-resolved conductance has been derived, which is consistent with numerical calculations and depends on the electric potential U, CPL intensity ΔΩ, exchange field h, and magnetization configuration: parallel (P) or antiparallel (AP). For the P (AP) configuration, the energy region with P = -1 or P = 1 is wider (narrower) and increases with ΔΩ.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!