Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Length measurement in young children younger than 18 months is important for monitoring growth and development. Accurate length measurement requires proper equipment, standardized methods, and trained personnel. In addition, length measurement requires young children's cooperation, making it particularly challenging during infancy and toddlerhood.
Objective: This study aimed to develop a length artificial intelligence (LAI) algorithm to aid users in determining recumbent length conveniently from smartphone images and explore its performance and suitability for personal and clinical use.
Methods: This proof-of-concept study in healthy children (aged 0-18 months) was performed at KK Women's and Children's Hospital, Singapore, from November 2021 to March 2022. Smartphone images were taken by parents and investigators. Standardized length-board measurements were taken by trained investigators. Performance was evaluated by comparing the tool's image-based length estimations with length-board measurements (bias [mean error, mean difference between measured and predicted length]; absolute error [magnitude of error]). Prediction performance was evaluated on an individual-image basis and participant-averaged basis. User experience was collected through questionnaires.
Results: A total of 215 participants (median age 4.4, IQR 1.9-9.7 months) were included. The tool produced a length prediction for 99.4% (2211/2224) of photos analyzed. The mean absolute error was 2.47 cm for individual image predictions and 1.77 cm for participant-averaged predictions. Investigators and parents reported no difficulties in capturing the required photos for most participants (182/215, 84.7% participants and 144/200, 72% participants, respectively).
Conclusions: The LAI algorithm is an accessible and novel way of estimating children's length from smartphone images without the need for specialized equipment or trained personnel. The LAI algorithm's current performance and ease of use suggest its potential for use by parents or caregivers with an accuracy approaching what is typically achieved in general clinics or community health settings. The results show that the algorithm is acceptable for use in a personal setting, serving as a proof of concept for use in clinical settings.
Trial Registration: ClinicalTrials.gov NCT05079776; https://clinicaltrials.gov/ct2/show/NCT05079776.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11624450 | PMC |
http://dx.doi.org/10.2196/59564 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!