A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Differential Effects of Confinement on the Dynamics of Normal and Tumor-Derived Pancreatic Ductal Organoids. | LitMetric

Pancreatic ductal adenocarcinoma (PDAC) is a cancer of the epithelia comprising the ductal network of the pancreas. During disease progression, PDAC tumors recruit fibroblasts that promote fibrosis, increasing local tissue stiffness and subjecting epithelial cells to increased compressive forces. Previous in vitro studies have documented cytoskeletal and nuclear adaptation following compressive stresses in two-dimensional (2D) and three-dimensional (3D) environments. However, a comparison of the responses of normal and tumor-derived ductal epithelia to physiologically relevant confinement remains underexplored, especially in 3D organoids. Here we control confinement with an engineered 3D microenvironment composed of Matrigel mixed with a low yield stress granular microgel. Normal and tumor-derived murine pancreas organoids (normal and tumor) were cultured for 48 h within this composite 3D environment or in pure Matrigel to investigate the effects of confinement on morphogenesis and lumen expansion. In confinement, tumor organoids (mT) formed a lumen that expanded rapidly, whereas normal organoids (mN) expanded more slowly. Moreover, a majority of normal organoids in more-confined conditions exhibited an inverted apicobasal polarity compared to those in less-confined conditions. Tumor organoids exhibited a collective "pulsing" behavior that increased in confinement. These pulses generated forces sufficient to locally overcome the yield stress of the microgels in the direction of organoid expansion. Normal organoids more commonly exhibit unidirectional rotation. Our in vitro microgel confinement platform enabled the discovery of two distinct modes of collective force generation in organoids that may shed light on the mutual interactions between tumors and the microenvironment. These insights into in vitro dynamics may deepen our understanding of how the confinement of healthy cells within a fibrotic tumor niche disrupts tissue organization and function in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.4c01301DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653396PMC

Publication Analysis

Top Keywords

normal tumor-derived
12
normal organoids
12
organoids
9
confinement
8
effects confinement
8
pancreatic ductal
8
yield stress
8
tumor organoids
8
normal
7
differential effects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!