Twisted magnetic van der Waals materials provide a flexible platform to engineer unconventional magnetism. Here we demonstrate the emergence of electrically tunable topological moiré magnetism in twisted bilayers of the spin-spiral multiferroic NiI. We establish a rich phase diagram featuring uniform spiral phases, a variety of -skyrmion lattices, and nematic spin textures ordered at the moiré scale. The emergence of these phases is driven by the local stacking and the resulting moiré modulated frustration. Notably, when the spin-spiral wavelength is commensurate with the moiré length scale by an integer , multiwalled skyrmions become pinned to the moiré pattern. We show that the strong magnetoelectric coupling displayed by the moiré multiferroic allows electric control of the -skyrmion lattices by an out-of-plane electric field. Our results establish a highly tunable platform for skyrmionics based on twisted van der Waals multiferroics, potentially enabling a new generation of ultrathin topologically protected spintronic devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638957PMC
http://dx.doi.org/10.1021/acs.nanolett.4c04582DOI Listing

Publication Analysis

Top Keywords

electric field
8
multiferroic nii
8
van der
8
der waals
8
-skyrmion lattices
8
moiré
7
field control
4
control moiré
4
moiré skyrmion
4
skyrmion phases
4

Similar Publications

Electroconvulsive therapy (ECT) is an effective treatment for depression but is often associated with cognitive side effects. In patients, ECT-induced electric field (E-field) strength across brain regions varies significantly due to anatomical differences, which may explain individual differences in cognitive side effects. We examined the relationship between regional E-field strength and change in verbal fluency score (i.

View Article and Find Full Text PDF

To improve the inadequate reliability of the grid that has led to a worsening energy crisis and environmental issues, comprehensive research on new clean renewable energy and efficient, cost-effective, and eco-friendly energy management technologies is essential. This requires the creation of advanced energy management systems to enhance system reliability and optimize efficiency. Demand-side energy management systems are a superior solution for multiple reasons.

View Article and Find Full Text PDF

In laser safety eyewear, due to the lack of complete blocking of ultraviolet and infrared rays, we proposed a structure based on one-dimensional multilayer composed of several layers of silicon dioxide and zirconium dioxide materials alternately behind polycarbonate lens. It is find out that the acceptance angle range to the photonic crystal is 0 to 39°. This incident angle range corresponds to the band gap of the photonic crystal.

View Article and Find Full Text PDF

Computational analysis of infant movement has significant potential to reveal markers of developmental health. We report two studies employing dynamic analyses of motor kinematics and motor behaviours, which characterise movement at two levels, in 9-month-old infants. We investigate the effect of preterm birth (< 33 weeks of gestation) and the effect of changing emotional and social-interactive contexts in the still-face paradigm.

View Article and Find Full Text PDF

Low-threshold surface-emitting colloidal quantum-dot circular Bragg laser array.

Light Sci Appl

January 2025

State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China.

Colloidal quantum dots (CQDs) are attractive gain media due to their wavelength-tunability and low optical gain threshold. Consequently, CQD lasers, especially the surface-emitting ones, are promising candidates for display, sensing and communication. However, it remains challenging to achieve a low-threshold surface-emitting CQD laser array with high stability and integration density.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!