Forward-directed genetic screens are extremely powerful in identifying novel genes involved in a specific biological process, including various chromatin regulatory pathways. However, the traditional ways of genetic mapping are time- and cost-demanding. Recently, the whole process was revolutionized by the development of mapping-by-sequencing (MBS) protocols. In MBS, the causal mutations and their positions within genes are identified directly by whole-genome sequencing and bioinformatics analysis of the bulk of mutant plants selected based on the mutant phenotype from a segregating population. MBS increases precision and economizes the mapping. Here, we describe a general protocol and provide practical tips on how to proceed with the mapping-by-sequencing on the example of Arabidopsis forward-directed genetic screen designed to identify mutants sensitive to a specific type of DNA damage. The described protocol is generally applicable to a wide range of genetic screens in various inbreeding species with a reference genome sequence.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-4228-3_4DOI Listing

Publication Analysis

Top Keywords

arabidopsis forward-directed
8
forward-directed genetic
8
genetic screens
8
practical approach
4
approach high-throughput
4
high-throughput accurate
4
accurate mapping-by-sequencing
4
mapping-by-sequencing arabidopsis
4
genetic
4
screens extremely
4

Similar Publications

Forward-directed genetic screens are extremely powerful in identifying novel genes involved in a specific biological process, including various chromatin regulatory pathways. However, the traditional ways of genetic mapping are time- and cost-demanding. Recently, the whole process was revolutionized by the development of mapping-by-sequencing (MBS) protocols.

View Article and Find Full Text PDF

DNA-protein cross-links (DPCs) are highly toxic DNA lesions consisting of proteins covalently attached to chromosomal DNA. Unrepaired DPCs physically block DNA replication and transcription. Three DPC repair pathways have been identified in Arabidopsis (Arabidopsis thaliana) to date: the endonucleolytic cleavage of DNA by the structure-specific endonuclease MUS81; proteolytic degradation of the crosslinked protein by the metalloprotease WSS1A; and cleavage of the cross-link phosphodiester bonds by the tyrosyl phosphodiesterases TDP1 and TDP2.

View Article and Find Full Text PDF

Loss of genome stability leads to reduced fitness, fertility and a high mutation rate. Therefore, the genome is guarded by the pathways monitoring its integrity and neutralizing DNA lesions. To analyze the mechanism of DNA damage induction by cytidine analog zebularine, we performed a forward-directed suppressor genetic screen in the background of Arabidopsis thaliana zebularine-hypersensitive structural maintenance of chromosomes 6b (smc6b) mutant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!