AI Article Synopsis

  • Titanium and its alloys are commonly used in dental implants, but they can trigger immune reactions leading to implant complications and failure.
  • Research shows that corrosion of titanium implants can result in harmful effects on various organ tissues due to the release of titanium particles.
  • Zirconia emerges as a promising alternative to titanium, offering benefits like non-corrosiveness and lower immune response risks, suggesting the importance of metal allergy testing for selecting suitable implant materials.

Article Abstract

Both commercially pure titanium and titanium alloys are established biomaterials for implantation in bone and are widely used today in dentistry. Titanium particulates have been shown in some patient clusters to induce cellular immune mediators responsible for type I and IV hypersensitivity reactions, causing amplified corrosion, osteolysis, and increased odds of implant failure. Systemically, titanium particles were found to affect varying organ tissues and cause potentially harmful effects. In vivo and vitro studies have shown that titanium dental implant corrosion can be induced by factors relating to bio-tribocorrosion. In this literature review, the consequences of titanium implant corrosion and particulate dissemination are discussed and later juxtaposed against a promising novel implant material, zirconia. Zirconia offers characteristics similar to titanium along with additional advantages such as being non-corrosive and having a lower propensity for inducing immune responses. From the mounting evidence discussed in this article, metal allergy testing would be advantageous for choosing an appropriate implant material to minimize potential adverse effects on cellular functions of local and diffuse tissues. Objective: This literature review aims to elucidate and describe mechanisms in which titanium implants may become corroded and induce cellular aberrations both locally and systemically in vivo. Implications of this study provide supportive evidence regarding the selection of appropriate biomaterials for implant patients susceptible to mounting a hypersensitivity reaction to titanium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584828PMC
http://dx.doi.org/10.1186/s40729-024-00578-3DOI Listing

Publication Analysis

Top Keywords

implant corrosion
12
titanium
10
titanium implant
8
hypersensitivity reactions
8
induce cellular
8
literature review
8
implant material
8
implant
7
systemic local
4
local interactions
4

Similar Publications

Implantable systems with chronic stability, high sensing performance, and extensive spatial-temporal resolution are a growing focus for monitoring and treating several diseases such as epilepsy, Parkinson's disease, chronic pain, and cardiac arrhythmias. These systems demand exceptional bendability, scalable size, durable electrode materials, and well-encapsulated metal interconnects. However, existing chronic implantable bioelectronic systems largely rely on materials prone to corrosion in biofluids, such as silicon nanomembranes or metals.

View Article and Find Full Text PDF

Silicon integrated circuits (ICs) are central to the next-generation miniature active neural implants, whether packaged in soft polymers for flexible bioelectronics or implanted as bare die for neural probes. These emerging applications bring the IC closer to the corrosive body environment, raising reliability concerns, particularly for chronic use. Here, we evaluate the inherent hermeticity of bare die ICs, and examine the potential of polydimethylsiloxane (PDMS), a moisture-permeable elastomer, as a standalone encapsulation material.

View Article and Find Full Text PDF

Synthesis and characterizing of MgO, 58S bioactive glass and N carboxymethyl chitosan and coating composites of them on SS316L.

Int J Biol Macromol

December 2024

Department of Materials Science and Engineering, Faculty of Engineering & Technology, Tarbiat Modares Universirty, Tehran, Iran.

One of the most effective ways to solve the problems caused by the presence of steel implants in the body is to apply a coating to them. This study aims to develop and optimize composite coatings of magnesium oxide (MgO), 58S bioactive glass (BG), and N-carboxymethyl chitosan (N-CMC) on stainless steel (SS316L) substrates using the electrophoretic deposition (EPD) method. The synthesized materials were characterized using FTIR, XRD, and SEM to confirm their structure and morphology prior to coating.

View Article and Find Full Text PDF

Magnesium alloys are promising biodegradable implant materials due to their excellent biocompatibility and non-toxicity. However, their poor corrosion resistance limits their application in vivo. Plasma electrolytic oxidation (PEO) is a powerful technique to improve the corrosion resistance of magnesium alloys.

View Article and Find Full Text PDF

Research on hydroxyapatite (HAP) coatings for bone tissue applications has been investigated for decades due to their significant osteoconductive and bioactivity properties. HAP closely resembles the mineral component of human bone, making it ideal for biomedical applications such as implants. This study investigates the synthesis of hydroxyapatite nanoparticles (HAP-NPs) via the microemulsion method, which is essential for creating HAP coatings on the Ti-6Al-4V substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!