Measuring position sense.

Exp Physiol

School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia.

Published: November 2024

AI Article Synopsis

  • Position sense plays a crucial role in our body awareness by providing feedback on the positioning of our limbs in relation to each other and the environment.
  • The study compared three methods of measuring position sense—two-arm matching, one-arm pointing, and one-arm repositioning—using blindfolded participants to explore the role of muscle spindles as position sensors.
  • Evidence indicated that muscle spindles are involved in position sensing across all methods, but their contribution and processing may vary, suggesting that there could be multiple forms of position sense relevant to clinical applications.

Article Abstract

Position sense is arguably more important than any of the other proprioceptive senses, because it provides us with information about the position of our body and limbs in relationship to one another and to our surroundings; it has been considered to contribute to our self-awareness. There is currently no consensus over the best method of measuring position sense. We have recently measured position sense with three commonly used methods. These were two-arm matching, one-arm pointing and one-arm repositioning, all carried out by blindfolded subjects with their lightly loaded forearms moving in the sagittal plane. It is currently believed that muscle spindles are the principal position sensors. We posed the question, was there evidence for spindles participating in the generation of position sense with each method? The indicator of spindle activity we used was the presence of thixotropic errors in the position signal, in response to conditioning voluntary contractions of forearm muscles. Based on this criterion, there was evidence of spindles contributing to position sense with all three methods. It was concluded that the spindle contribution to the position signal and the extent to which this was processed centrally was different with each method. It is argued that a case could be made for the existence of more than one position sense. Differences between the methods have implications for their meaning in a clinical setting.

Download full-text PDF

Source
http://dx.doi.org/10.1113/EP092190DOI Listing

Publication Analysis

Top Keywords

position sense
28
position
10
measuring position
8
sense three
8
evidence spindles
8
position signal
8
sense
7
sense position
4
sense arguably
4
arguably proprioceptive
4

Similar Publications

Establishing normative values and understanding how proprioception varies among body parts is crucial. However, the variability across individuals, especially adolescents, makes it difficult to establish norms. This prevents further investigation into classifying patients with abnormal proprioception.

View Article and Find Full Text PDF

Women show enhanced proprioceptive target estimation through visual-proprioceptive conflict resolution.

Front Psychol

December 2024

Departamento de Psicologia, Laboratório de Neurociência do Comportamento, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil.

To form a unified and coherent perception of the organism's state and its relationship with the surrounding environment, the nervous system combines information from various sensory modalities through multisensory integration processes. Occasionally, data from two or more sensory channels may provide conflicting information. This is particularly evident in experiments using the mirror-guided drawing task and the mirror-box illusion, where there is conflict between positional estimates guided by vision and proprioception.

View Article and Find Full Text PDF

The study aimed to determine if virtual reality (VR) games could enhance neuromuscular control and improve anticipatory and compensatory strategies in ball-kicking for soccer players. It was a single-blind randomized clinical trial involving 32 male soccer players with chronic ankle instability. Participants were divided into two groups: VR games and balance training.

View Article and Find Full Text PDF

Voltage-gated potassium channels (VGKCs) comprise the largest and most complex families of ion channels. Approximately 70 genes encode VGKC alpha subunits, which assemble into functional tetrameric channel complexes. These subunits can also combine to form heteromeric channels, significantly expanding the potential diversity of VGKCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!