Tools to understand hypoxia responses in plant tissues.

Plant Physiol

Experimental and Computational Plant Development, Institute of Environment Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, Netherlands.

Published: December 2024

Our understanding of how low oxygen (O2) conditions arise in plant tissues and how they shape specific responses has seen major advancement in recent years. Important drivers have been (1) the discovery of the molecular machinery that underpins plant O2 sensing; and (2) a growing set of dedicated tools to define experimental conditions and assess plant responses with increasing accuracy and resolution. While some of those tools, such as the Clark-type O2 electrode, were established decades ago, recent customization has set entirely new standards and enabled novel research avenues in plant hypoxia research. Other tools, such as optical hypoxia reporters and O2 biosensor systems, have been introduced more recently. Yet, their adoption into plant hypoxia research has started to generate novel insight into hypoxia physiology at the tissue and cellular levels. The aim of this update is to provide an overview of the currently available and emerging tools for O2 hypoxia measurements in plants, with an emphasis on high-resolution analyses in living plant tissues and cells. Furthermore, it offers directions for future development and deployment of tools to aid progress with the most pressing questions in plant hypoxia research.

Download full-text PDF

Source
http://dx.doi.org/10.1093/plphys/kiae624DOI Listing

Publication Analysis

Top Keywords

plant tissues
12
plant hypoxia
12
plant
8
hypoxia
7
tools
6
tools understand
4
understand hypoxia
4
hypoxia responses
4
responses plant
4
tissues understanding
4

Similar Publications

Establishment of a CRISPR-Cas9-Mediated Genome Editing System in Flax.

CRISPR J

January 2025

Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.

Flax is an important crop used for oil and fiber production. Although genetic engineering has been possible in flax, it is not commonly used to produce cultivars. However, the use of genome editing technology, which can produce site-specific mutations without introducing foreign genes, may be a valuable tool for creating elite cultivars that can be easily cultivated.

View Article and Find Full Text PDF

Dermatologists have been interested in recent advancements in regenerative therapy. Current research is actively investigating the possibility of placental tissue derivatives to decelerate the skin aging process, enhance skin regeneration, reduce scarring, and prevent hair loss. Amniotic membranes (AM) play a crucial role in regenerative medicine as they serve as a suitable means of transporting stem cells, growth hormones, cytokines, and other essential compounds.

View Article and Find Full Text PDF

This study investigated the effects of fine-sized pork bone biochar particles on remediating As-contaminated soil and alleviating associated phytotoxicity to rice in 50-day short-term and 120-day full-life-cycle pot experiments. The addition of micro-nanostructured pork bone biochar (BC) pyrolyzed at 400 and 600 °C (BC400 and BC600) significantly increased the As-treated shoot and root fresh weight by 24.4-77.

View Article and Find Full Text PDF

Implant-integrated drug delivery systems that enable the release of biologically active factors can be part of an in situ tissue engineering approach to restore biological function. Implants can be functionalized with drug-loaded nanoparticles through a layer-by-layer assembly. Such coatings can release biologically active levels of growth factors.

View Article and Find Full Text PDF

Identification and characterization of a novel QTL for barley yellow mosaic disease resistance from bulbous barley.

Plant Genome

March 2025

Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.

Winter barley (Hordeum vulgare) production areas in the middle and lower reaches of the Yangtze River are severely threatened by barley yellow mosaic disease, which is caused by Barley yellow mosaic virus and Barley mild mosaic virus. Improving barley disease resistance in breeding programs requires knowledge of genetic loci in germplasm resources. In this study, bulked segregant analysis (BSA) identified a novel major quantitative trait loci (QTL) QRym.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!