KNUCKLES regulates floral meristem termination by controlling auxin distribution and cytokinin activity.

Plant Cell

State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.

Published: December 2024

The termination of floral meristem (FM) activity is essential for the normal development of reproductive floral organs. During this process, KNUCKLES (KNU), a C2H2-type zinc finger protein, crucially regulates FM termination by directly repressing the expression of both the stem cell identity gene WUSCHEL (WUS) and the stem cell marker gene CLAVATA3 (CLV3) to abolish the WUS-CLV3 feedback loop required for FM maintenance. In addition, phytohormones auxin and cytokinin are involved in FM regulation. However, whether KNU modulates auxin and cytokinin activities for FM determinacy control remains unclear. Here, we show that the auxin distribution and the cytokinin activity mediated by KNU in Arabidopsis (Arabidopsis thaliana) promote the termination of FM during stage 6 of flower development. Mutation of KNU leads to altered distribution of auxin and cytokinin in the FM of a stage 6 floral bud. Moreover, KNU directly represses the auxin transporter gene PIN-FORMED1 (PIN1) and the cytokinin biosynthesis gene ISOPENTENYLTRANSFERASE7 (IPT7) via mediating H3K27me3 deposition on these 2 loci to regulate auxin and cytokinin activities. Our study presents a molecular regulatory network that elucidates how the transcriptional repressor KNU integrates and modulates the activities of auxin and cytokinin, thus securing the timed FM termination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663560PMC
http://dx.doi.org/10.1093/plcell/koae312DOI Listing

Publication Analysis

Top Keywords

auxin cytokinin
20
floral meristem
8
auxin
8
auxin distribution
8
cytokinin
8
distribution cytokinin
8
cytokinin activity
8
stem cell
8
cytokinin activities
8
knu
6

Similar Publications

The lily is a globally popular cut flower, and managing dormancy in lily bulblets is essential for continuous, year-round production. While nitric oxide (NO) has been shown to influence seed dormancy and germination, its role in dormancy release in lilies was previously unconfirmed. In this study, we investigated the effects of NO on dormancy release in lily bulblets using SNP and c-PTIO.

View Article and Find Full Text PDF

Poplar transformation with variable explant sources to maximize transformation efficiency.

Sci Rep

January 2025

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

For decades, Agrobacterium tumefaciens-mediated plant transformation has played an integral role in advancing fundamental and applied plant biology. The recent omnipresent emergence of synthetic biology, which relies on plant transformation to manipulate plant DNA and gene expression for novel product biosynthesis, has further propelled basic as well as applied interests in plant transformation technologies. The strong demand for a faster design-build-test-learn cycle, the essence of synthetic biology, is, however, still ill-matched with the long-standing issues of high tissue culture recalcitrance and low transformation efficiency of a wide range of plant species especially food, fiber and energy crops.

View Article and Find Full Text PDF

The perennial species , commonly known as St. John's Wort, is well regarded for its medicinal attributes, particularly its strong anti-inflammatory and antidepressant effects. L.

View Article and Find Full Text PDF

Background: Samh (Mesembryanthemum forsskalii, M. cryptanthum) belongs to Aizoaceae family and is found in northern Saudi Arabia, primarily in desert or dry shrubland habitats. M.

View Article and Find Full Text PDF

Investigation of the anti-Huanglongbing effects using antimicrobial lipopeptide and phytohormone complex powder prepared from MG-2 fermentation.

Front Microbiol

December 2024

National Key Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, National Fruit Free-Virus Germplasm Resource Indoor Conservation Center, Department of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China.

Global citrus production has been severely affected by citrus Huanglongbing (HLB) disease, caused by Candidatus Liberibacter asiaticus (Clas), and the development of effective control methods are crucial. This study employed antimicrobial lipopeptide and phytohormone complex powder (L1) prepared from the fermentation broth of the endophytic plant growth promoting bacterium (PGPB) of strain MG-2 to treat Liberibacter asiaticus (Las)-infected ' 'Chun Jian' plants. Real-time fluorescence quantitative polymerase chain reaction (qPCR) and PCR were employed for disease detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!