A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Visualizing active fungicide formulation mobility in tomato leaves with desorption electrospray ionisation mass spectrometry imaging. | LitMetric

Newer and safer agrochemicals are always in demand to meet the increasing needs of a growing population for affordable food. Spatial chemical monitoring of the active mobility of an agrochemical is essential to this agrochemical development process and mass spectrometry imaging (MSI) is proposed as a safer, easier alternative to the existing standard of autoradiography for the same. With desorption electrospray ionisation mass spectrometry imaging (DESI MSI) using leaf imprints, we were able to visualize the active agrochemical mobility of a commercial fungicide formulation with the active ingredient Azoxystrobin in whole tomato leaves. The leaf-imprinting method was optimized with precise control over the pressure conditions and time of imprinting to yield highly consistent samples for imaging. The reproducibility of this method was tested with the Azoxystrobin formulation applied to tomato leaves and was compared to the mobility of the unformulated Azoxystrobin standard in similar application conditions. The xylem mobility and the lateral-leaf lamina spreading of the fungicide were visualized with mass spectrometry imaging and validated using complementary LC-MS studies. The necessity and importance of the agrochemical application as a formulation were re-iterated by the limited mobility observed in Azoxystrobin standard studies compared to the Azoxystrobin formulation. This mass spectrometry imprint-imaging method could be translated for the visualization of any xenobiotic in further foliar systems particularly with soft leaves.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583139PMC
http://dx.doi.org/10.1039/d4an01309cDOI Listing

Publication Analysis

Top Keywords

mass spectrometry
20
spectrometry imaging
16
tomato leaves
12
fungicide formulation
8
desorption electrospray
8
electrospray ionisation
8
ionisation mass
8
azoxystrobin formulation
8
azoxystrobin standard
8
mobility
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!