Site-percolation transition of run-and-tumble particles.

Soft Matter

Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.

Published: December 2024

We study percolation transition of run and tumble particles (RTPs) on a two dimensional square lattice. RTPs in these models run to the nearest neighbour along their internal orientation with unit rate, and to other nearest neighbours with rates . In addition, they tumble to change their internal orientation with rate . We show that for small tumble rates, RTP-clusters created by joining occupied nearest neighbours irrespective of their orientation form a phase separated state when the rate of positional diffusion crosses a threshold; with further increase of the clusters disintegrate and another transition to a mixed phase occurs. The critical exponents of this re-entrant site-percolation transition of RTPs vary continuously along the critical line in the - plane, but a scaling function remains invariant. This function is identical to the corresponding universal scaling function of percolation transition observed in the Ising model. We also show that the critical exponents of the underlying motility induced phase separation transition are related to corresponding percolation-critical-exponents by constant multiplicative factors known from the correspondence of magnetic and percolation critical exponents of the Ising model.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4sm00838cDOI Listing

Publication Analysis

Top Keywords

critical exponents
12
site-percolation transition
8
percolation transition
8
internal orientation
8
nearest neighbours
8
scaling function
8
ising model
8
transition
5
transition run-and-tumble
4
run-and-tumble particles
4

Similar Publications

Scaling theory for non-Hermitian topological transitions.

J Phys Condens Matter

January 2025

Theoretical Science, Poornaprajna Institute of Scientific Research, Ranjith Kumar R, Department of Physics, Indian Institute of Technoloby Bombay, Mumbai, 400076, INDIA.

Understanding the critical properties is essential for determining the physical behavior of topological systems. In this context, scaling theories based on the curvature function in momentum space, the renormalization group (RG) method, and the universality of critical exponents have proven effective. In this work, we develop a scaling theory for non-Hermitian topological states of matter.

View Article and Find Full Text PDF

We study Hopfield networks with non-reciprocal coupling inducing switches between memory patterns. Dynamical phase transitions occur between phases of no memory retrieval, retrieval of multiple point-attractors, and limit-cycle attractors. The limit cycle phase is bounded by two critical regions: a Hopf bifurcation line and a fold bifurcation line, each with unique dynamical critical exponents and sensitivity to perturbations.

View Article and Find Full Text PDF

Objective: To compare the effectiveness and safety of budesonide-glycopyrrolate-formoterol, a twice daily metered dose inhaler, and fluticasone-umeclidinium-vilanterol, a once daily dry powder inhaler, in patients with chronic obstructive pulmonary disease (COPD) treated in routine clinical practice.

Design: New user cohort study.

Setting: Longitudinal commercial US claims data.

View Article and Find Full Text PDF

Random walks with long-range memory on networks.

Chaos

January 2025

Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.

We study an exactly solvable random walk model with long-range memory on arbitrary networks. The walker performs unbiased random steps to nearest-neighbor nodes and intermittently resets to previously visited nodes in a preferential way such that the most visited nodes have proportionally a higher probability to be chosen for revisit. The occupation probability can be expressed as a sum over the eigenmodes of the standard random walk matrix of the network, where the amplitudes slowly decay as power-laws at large times, instead of exponentially.

View Article and Find Full Text PDF

Aperiodic Pupil Fluctuations at Rest Predict Orienting of Visual Attention.

Psychophysiology

January 2025

Department of Psychology, Hangzhou Normal University, Hangzhou, Zhejiang, China.

The aperiodic exponent of the power spectrum of signals in several neuroimaging modalities has been found to be related to the excitation/inhibition balance of the neural system. Leveraging the rich temporal dynamics of resting-state pupil fluctuations, the present study investigated the association between the aperiodic exponent of pupil fluctuations and the neural excitation/inhibition balance in attentional processing. In separate phases, we recorded participants' pupil size during resting state and assessed their attentional orienting using the Posner cueing tasks with different cue validities (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!