Alignments in bioinformatics refer to the arrangement of sequences to identify regions of similarity that can indicate functional, structural, or evolutionary relationships. They are crucial for bioinformaticians as they enable accurate predictions and analyses in various applications, including protein subcellular localization. The predictive model used in this article is based on a deep - convolutional architecture. We tested configurations of Deep N-to-1 convolutional neural networks of various depths and widths during experimentation for the evaluation of better-performing values across a diverse set of eight classes. For without alignment assessment, sequences are encoded using one-hot encoding, converting each character into a numerical representation, which is straightforward for non-numerical data and useful for machine learning models. For with alignments assessment, multiple sequence alignments (MSAs) are created using PSI-BLAST, capturing evolutionary information by calculating frequencies of residues and gaps. The average difference in peak performance between models with alignments and without alignments is approximately 15.82%. The average difference in the highest accuracy achieved with alignments compared with without alignments is approximately 15.16%. Thus, extensive experimentation indicates that higher alignment accuracy implies a more reliable model and improved prediction accuracy, which can be trusted to deliver consistent performance across different layers and classes of subcellular localization predictions. This research provides valuable insights into prediction accuracies with and without alignments, offering bioinformaticians an effective tool for better understanding while potentially reducing the need for extensive experimental validations. The source code and datasets are available at http://distilldeep.ucd.ie/SCL8/.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.26767 | DOI Listing |
Sci Rep
January 2025
Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, Hunan, China.
Autosomal dominant deafness-15 which is caused by mutation in the POU4F3 gene, has been reported with a wide degree of clinical heterogeneity, even between intrafamilial members. However, the reason is still elusive. In this study, A four-generation Chinese family with 11 patients manifesting late-onset progressive non-syndromic hearing loss was recruited.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China. Electronic address:
ER stress activates the unfolded protein response (UPR), a critical mechanism for maintaining cellular homeostasis in plants. The p24 protein family is known to be involved in protein trafficking between the endoplasmic reticulum (ER) and the Golgi apparatus, but its role in ER stress remains unclear in plants. In this study, we found that Atp24δ8(delta8), a member of the δ-2 subclass of the p24 family, is significantly upregulated in response to tunicamycin-induced ER stress.
View Article and Find Full Text PDFBMC Biol
January 2025
The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
Background: The variations in alliin content are a crucial criterion for evaluating garlic quality and is the sole precursor for allicin biosynthesis, which is significant for the growth, development, and stress response of garlic. WRKY transcription factors are essential for enhancing stress resistance by regulating the synthesis of plant secondary metabolites. However, the molecular mechanisms regulating alliin biosynthesis remain unexplored.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
Background: Targeting exportin1 (XPO1) with Selinexor (SEL) is a promising therapeutic strategy for patients with multiple myeloma (MM). However, intrinsic and acquired drug resistance constitute great challenges. SEL has been reported to promote the degradation of XPO1 protein in tumor cells.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
Background: Chinese cabbage is a cross-pollinated crop with remarkable heterosis, and male-sterile line is an important mean to produce its hybrids. In this study, a male-sterile mutant msm7 was isolated from a Chinese cabbage DH line 'FT' by using EMS-mutagenesis.
Results: Compared with the wild-type 'FT', the anthers of mutant msm7 were completely aborted, accompanied by the defects in leaf and petal development.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!