Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: To evaluate whether race- and sex-based biases are present in a predictive model of avoidable hospital (AH) events.
Study Setting And Design: We examined whether Medicare fee-for-service (FFS) beneficiaries in Maryland with similar risk scores differed in true AH event risk on the basis of race or sex (n = 324,834). This was operationalized as a logistic regression of true AH events on race or sex with fixed effects for risk score percentile.
Data Sources And Analytic Sample: Beneficiary-level risk scores were derived from 36 months of Medicare FFS claims (April 2019-March 2022) and generated in May 2022. True AH events were observed in claims from June 2022.
Principal Findings: Black patients had higher average risk scores than White patients; however, the likelihood of experiencing an AH event did not differ by race when controlling for predicted risk (Marginal Effect [ME] = 0.0003, 95%CI -0.0003 to 0.0009). AH event likelihood was lower in males when controlling for risk level; however, the effect was small (ME = -0.0008, 95% CI -0.0013 to -0.0003) and it did not differ by sex for the target group for intervention (ME = 0.0002, 95% CI -0.0031 to 0.0036).
Conclusions: We implemented a simple bias assessment methodology and found no evidence of meaningful race- or sex-based bias in this model. We encourage the incorporation of bias checks into predictive model development and monitoring processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1475-6773.14409 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!