Developing conductive hydrogels with both high strength and fracture toughness for diverse applications remains a significant challenge. In this work, an efficient toughening strategy is presented that exploits the multiple enhancement effects of anions through a synergistic combination of mineralization, salting-out, and ion coordination. The approach centers on a hydrogel system comprising two polymers and a cation that is highly responsive to anions. Specifically, polyvinyl alcohol (PVA) and chitosan quaternary ammonium (HACC) are used, as PVA benefits from salting-out effects and HACC undergoes ion coordination with multivalent anions. After just 1 h of immersion in an anionic solution, the hydrogel undergoes a dramatic improvement in mechanical properties, increasing by more than three orders of magnitude. The optimized hydrogel achieves high strength (26 MPa), a high Young's modulus (45 MPa), and remarkable fracture toughness (67.3 kJ m), representing enhancements of 860, 3200, and 1200 times, respectively, compared to its initial state. This breakthrough overcomes the typical trade-off between stiffness and toughness. Additionally, the ionic conductivity of the hydrogel enables reliable strain sensing and supports the development of durable supercapacitors. This work presents a simple and effective pathway for developing hydrogels with exceptional strength, toughness, and conductivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202409565 | DOI Listing |
Acc Chem Res
January 2025
Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstrasse 11, 89081 Ulm, Germany.
ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Life Science, Northeast Agricultural University, Harbin 150030, China. Electronic address:
Under salt stress, plasma membrane proteins regulate ion homeostasis and the balance between reactive oxygen species (ROS). In this study, we investigated the functions of two small membrane proteins-MsRCI2B (tailless) and MsRCI2E (tailed)-encoded by the RCI2 (Rare Cold Inducible 2) gene family in Medicago sativa (alfalfa). We identified the distinct subcellular localization and expression patterns of these proteins under salt stress.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy. Electronic address:
Polyethylene nanoplastics (NPs) are widely diffused in terrestrial environments, including soil ecosystems, but the stress mechanisms in plants are not well understood. This study aimed to investigate the effects of two increasing concentrations of NPs (20 and 200 mg kg of soil) in lettuce. To this aim, high-throughput hyperspectral imaging was combined with metabolomics, covering both primary (using NMR) and secondary metabolism (using LC-HRMS), along with lipidomics profiling (using ion-mobility-LC-HRMS) and plant performance.
View Article and Find Full Text PDFMolecules
January 2025
College of Chemistry and Chemical Engineering, Central South University, Changsha 410017, China.
Ratiometric lanthanide coordination polymers (Ln-CPs) are advanced materials that combine the unique optical properties of lanthanide ions (e.g., Eu, Tb, Ce) with the structural flexibility and tunability of coordination polymers.
View Article and Find Full Text PDFMolecules
January 2025
Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
The importance of fluorine and aluminum in all aspects of daily life has led to an enormous increase in human exposure to these elements in their various forms. It is therefore important to understand the routes of exposure and to investigate and understand the potential toxicity. Of particular concern are aluminum-fluoride complexes (AlF), which are able to mimic the natural isostructural phosphate group and influence the activity of numerous essential phosphoryl transferases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!