Electrolytic hydrogen production is of great significance in energy conversion and sustainable development. Traditional electrolytic water splitting confronts high anode voltage with oxygen generation and the amount of hydrogen produced at cathode depends entirely on the quantity of electric charge input. Herein, excess hydrogen output can be achieved by constructing a spontaneous hydrazine oxidation reaction (HzOR) coupled hydrogen evolution reaction (HER) system. For the hydrazine oxidation-assisted electrolyzer in this work, both the external input electrons and the electrons produced by spontaneous chemical redox reaction can reduce water, producing more hydrogen than traditional electrolytic water splitting system. The ultrafast kinetics of bifunctional P-doped Co-based catalysts plays a key role in the spontaneous feature of HzOR/HER redox reaction and low working voltage of hydrazine oxidation-assisted electrolyzer (12 mV@100 mA cm). Theoretical calculation results and ex situ/in situ spectra demonstrate that doped P could optimize electronic structure, regulate adsorption energy of intermediates, and thus endows catalysts with ultrafast kinetics. This work provides a new pathway for the development of spontaneous oxidation-assisted hydrogen production, to achieve excess hydrogen output via concurrent electrochemical and chemical redox reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202406288DOI Listing

Publication Analysis

Top Keywords

excess hydrogen
12
hydrogen output
12
chemical redox
12
hydrogen
8
output concurrent
8
concurrent electrochemical
8
electrochemical chemical
8
redox reactions
8
p-doped co-based
8
co-based catalysts
8

Similar Publications

Multifaceted Immunomodulatory Nanocomplexes Target Neutrophilic-ROS Inflammation in Acute Lung Injury.

Adv Sci (Weinh)

December 2024

Department of Critical Care Medicine and Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.

The sepsis-induced acute lung injury (ALI) still represents one of the leading causes of death in critically ill patients, underscoring the need for novel therapies. Excessive activation of immune cells and damage of reactive oxygen species (ROS) are the main factors that exacerbate lung injury. Here, the multifaceted immunomodulatory nanocomplexes targeting the proinflammatory neutrophilic activation and ROS damage are established.

View Article and Find Full Text PDF

Bacterial implant-associated infections predominantly contribute to the failure of prosthesis implantation. The local biofilm microenvironment (BME), characterized by its hyperacidic condition and high hydrogen peroxide (HO) level, inhibits the host's immune response, thereby facilitating recurrent infections. Here, a Janus PEGylated CuS nanoparticle (CuPen) armed engineered Lactobacillus casei (L.

View Article and Find Full Text PDF

Background: Diagnosing laryngopharyngeal reflux (LPR) is challenging due to overlapping symptoms. While proton pump inhibitors (PPIs) are commonly prescribed, reliable predictors of their responsiveness are unclear. Reflux monitoring technologies like dual potential of hydrogen (pH) sensors and multichannel intraluminal impedance-pH (MII-pH) could improve diagnosis.

View Article and Find Full Text PDF

ASB1 engages with ELOB to facilitate SQOR ubiquitination and HS homeostasis during spermiogenesis.

Redox Biol

December 2024

State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China. Electronic address:

Male infertility, frequently driven by oxidative stress, impacts half of infertile couples globally. Despite its significance, the precise mechanisms governing this process remain elusive. In this study, we demonstrate that ASB1, the substrate recognition subunit of a ubiquitin ligase, is highly expressed in the mouse testis.

View Article and Find Full Text PDF

This study investigated the potential genotoxic and carcinogenic effects of N-nitrosodimethylamine (NDMA), a hazardous compound found in ranitidine formulations that are used to treat excessive stomach acid. The study first examined the effects of NDMA-contaminated ranitidine formulation on Allium cepa root growth and mitotic activity. The results demonstrated dose-dependent decreases in both root growth and mitotic index indicating genotoxicity and cell division disruption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!