Resistance to cytarabine is a major obstacle to the successful treatment of acute myeloid leukemia (AML). The present study aimed to explore the mechanism by which sirtuin 1 (SIRT1) reverses the cytarabine resistance of leukemia cells. Cell viability was investigated using the EdU proliferation assay. The expression levels of molecules were determined by reverse transcription‑quantitative PCR, western blotting, and immunofluorescence staining. Flow cytometry was used to detect reactive oxygen species and apoptosis levels, The levels of superoxide dismutase, glutathione and malondialdehyde were examined by ELISA. Mitochondrial damage was investigated by transmission electron microscopy. Furthermore, tumor growth was evaluated in a xenograft model. The results revealed that SIRT1 expression was significantly upregulated in drug‑resistant leukemia cells. By contrast, knockdown of SIRT1 reversed cytarabine resistance in HL60 cells by promoting ferroptosis. Mechanistically, SIRT1 could regulate the translocation of HMGB1 from the nucleus to the cytoplasm in cytarabine‑resistant HL60 (HL60/C) cells. Furthermore, knockdown of HMGB1 inhibited the expression of ACSL4. In addition, knockdown of SIRT1 expression could inhibit the growth of HL60/C cells and reverse cytarabine resistance. In conclusion, the present results demonstrated that SIRT1 inhibition could be a promising strategy to overcome cytarabine resistance in AML.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637499PMC
http://dx.doi.org/10.3892/ijo.2024.5708DOI Listing

Publication Analysis

Top Keywords

cytarabine resistance
20
acute myeloid
8
myeloid leukemia
8
leukemia cells
8
sirt1 expression
8
knockdown sirt1
8
hl60/c cells
8
sirt1
7
cytarabine
6
resistance
6

Similar Publications

Acute myeloid leukemia (AML), a heterogeneous hematologic malignancy, has generally a poor prognosis despite the recent advancements in diagnostics and treatment. Genetic instability, particularly mutations in the FMS-like tyrosine kinase 3 (FLT3) gene, is associated with severe outcomes. Approximately 30 % of AML patients harbor FLT3 mutations, which have been linked to higher relapse and reduced survival rates.

View Article and Find Full Text PDF

Background/aim: Myelodysplastic syndromes (MDSs) are clonal bone marrow disorders characterized by ineffective hematopoiesis. They are classified based on morphology and genetic alterations, with SF3B1 variants linked to favorable prognosis and MECOM rearrangements associated with poor outcomes. The combined effects of these alterations remain unclear.

View Article and Find Full Text PDF

Cytarabine, daunorubicin, and etoposide (ADE) have been the standard backbone of induction chemotherapy regimens for acute myeloid leukemia (AML) patients for over five decades. However, chemoresistance is still a major concern, and a significant proportion of AML becomes resistant to ADE treatment leading to relapse and poor survival. Therefore, there is a significant need to identify mechanisms mediating drug resistance to overcome chemoresistance.

View Article and Find Full Text PDF

Mutation- and MRD-informed treatments for transplant-ineligible patients.

Hematology Am Soc Hematol Educ Program

December 2024

Department of Leukemia, MD Anderson Cancer Center, Houston, TX.

The ongoing development of molecularly targeted therapies in addition to the new standard of care combination of azacitidine and venetoclax (AZA-VEN) has transformed the prognostic outlook for older, transplant-ineligible patients with acute myeloid leukemia (AML). While conventional treatments, such as standard anthracycline and cytarabine- based chemotherapy or hypomethylating agent (HMA) monotherapy, are associated with a generally poor prognosis in this patient population, the use of these novel regimens can result in long-lasting, durable remissions in select patient subgroups. Furthermore, the simultaneous discovery of resistance mechanisms to targeted therapies and AZA-VEN has enabled the identification of patient subgroups with inferior outcomes, leading to the development, of new risk-stratification models and clinical investigations incorporating targeted therapies using an HMA-VEN-based platform.

View Article and Find Full Text PDF
Article Synopsis
  • * A study examined HIF-1α levels in the bone marrow of 29 newly diagnosed NPM1FLT3-ITD normal karyotype AML patients and found that over half exhibited strong HIF-1α expression, correlating this with increased relapse rates and shorter relapse-free survival (RFS).
  • * High HIF-1α levels might serve as a useful prognostic biomarker for predicting poor RFS and resistance to cytarabine in NPM1FLT
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!