Behavioural ecology by definition of its founding 'Tinbergian framework' is an integrative field, however, it lags behind in incorporating genomic methods. 'Finding the gene/s for a behaviour' is still rarely feasible or cost-effective in the wild but as we show here, genomic data can be used to address broader questions. Here we use avian brood parasitism, a model system in behavioural ecology as a case study to highlight how behavioural ecologists could use the full potential of state-of-the-art genomic tools. Brood parasite-host interactions are one of the most easily observable and amenable natural laboratories of antagonistic coevolution, and as such have intrigued evolutionary biologists for decades. Using worked examples, we demonstrate how genomic data can be used to study the causes and mechanisms of (co)evolutionary adaptation and answer three key questions for the field: (i) Where and when should brood parasitism evolve?, (ii) When and how should hosts defend?, and (iii) Will coevolution persist with ecological change? In doing so, we discuss how behavioural and molecular ecologists can collaborate to integrate Tinbergen's questions and achieve the coherent science that he promoted to solve the mysteries of nature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581780 | PMC |
http://dx.doi.org/10.1002/ece3.70335 | DOI Listing |
Animals (Basel)
December 2024
School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.
Honey bee () population declines have been associated with the parasitic mite, , which is currently primarily controlled by the use of acaricides. An alternative is to breed for resistance to , which was conducted in this study by bidirectional selection for mite fall to obtain colonies with low (resistant) or high (susceptible) population growth (LVG and HVG, respectively). Selection for three generations resulted in approx.
View Article and Find Full Text PDFJ Invertebr Pathol
December 2024
Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, United States; University of Florida Genetics Institute, Gainesville, FL 32610, United States. Electronic address:
The small hive beetle (SHB), Aethina tumida Murray is an invasive pest of the honey bee. This beetle feeds not only on bee resources within the hive such as honey and pollen, but also on bee brood and dead bees. The impact of this beetle's intimate parasitic association with the honey bee on virus transmission is poorly understood.
View Article and Find Full Text PDFPrev Vet Med
December 2024
Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska St. 159c, Warsaw 02-776, Poland. Electronic address:
Anim Cogn
December 2024
Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China.
Egg retrieval in birds may help ensure the survival of eggs and improve reproductive success. However, with the risk of brood parasitism, for ground-nesting or cavity-nesting bird hosts, there is a significant reproductive cost and thus a reduction in fitness if the host wrongly retrieved the parasitic eggs. The south rock bunting (Emberiza yunnanensis) and yellow-throated bunting (E.
View Article and Find Full Text PDFElife
December 2024
Department of Biological Sciences, University of Memphis, Memphis, United States.
The rise of angiosperms to ecological dominance and the breakup of Gondwana during the Mesozoic marked major transitions in the evolutionary history of insect-plant interactions. To elucidate how contemporary trophic interactions were influenced by host plant shifts and palaeogeographical events, we integrated molecular data with information from the fossil record to construct a time tree for ancient phytophagous weevils of the beetle family Belidae. Our analyses indicate that crown-group Belidae originated approximately 138 Ma ago in Gondwana, associated with Pinopsida (conifer) host plants, with larvae likely developing in dead/decaying branches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!