For univentricular heart patients, the Fontan circulation presents a unique pathophysiology due to chronic non-pulsatile low-shear-rate pulmonary blood flow, where non-Newtonian effects are likely substantial. This study evaluates the influence of non-Newtonian behavior of blood on fluid dynamics and energetic efficiency in pediatric patient-specific models of the Fontan circulation. We used immersed boundary-lattice Boltzmann method simulations to compare Newtonian and non-Newtonian viscosity models. The study included models from twenty patients exhibiting a low cardiac output state (cardiac index of 2 L/min/m). We quantified metrics of energy loss (indexed power loss and viscous dissipation), non-Newtonian importance factors, and hepatic flow distribution. We observed significant differences in flow structure between Newtonian and non-Newtonian models. Specifically, the non-Newtonian simulations demonstrated significantly higher local and average viscosity, corresponding to a higher non-Newtonian importance factor and larger energy loss. Hepatic flow distribution was also significantly different in a subset of patients. These findings suggest that non-Newtonian behavior contributes to flow structure and energetic inefficiency in the low cardiac output state of the Fontan circulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577338PMC
http://dx.doi.org/10.1063/5.0236095DOI Listing

Publication Analysis

Top Keywords

fontan circulation
16
patients fontan
8
non-newtonian
8
non-newtonian behavior
8
newtonian non-newtonian
8
low cardiac
8
cardiac output
8
output state
8
energy loss
8
hepatic flow
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!