In recent years, extensive research on noble metal-TiO nanocomposites has demonstrated their crucial role in various applications such as water splitting, self-cleaning, CO reduction, and wastewater treatment. The structure of the noble metal-TiO nanocomposites is critical in determining their photocatalytic properties. Numerous studies in the literature describe the preparation of these nanocomposites with various shapes and sizes to achieve tunable photocatalytic performance. However, achieving a stable coupling between the noble metal and the TiO surface remains a challenge for long-term use. Photocatalytic deposition is one of the most promising approaches to obtain well-defined noble metal structures on TiO surfaces with strong adhesion. Noble metal nanoparticles (NPs) can be quickly grown on the TiO surface under light exposure. However, various parameters such as the pH, temperature, precursor, and electron sacrificial agent affect the size and distribution of the deposited particles. In this review article, we look at the critical parameters that influence the photocatalytic deposition of noble metals on major TiO morphologies, classified as 0D (NPs and nanocrystals), 1D (nanotubes and nanowires), and 2D (thin films).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577270PMC
http://dx.doi.org/10.1039/d4na00623bDOI Listing

Publication Analysis

Top Keywords

photocatalytic deposition
12
noble metal
12
deposition noble
8
noble metals
8
noble metal-tio
8
metal-tio nanocomposites
8
tio surface
8
noble
7
photocatalytic
5
tio
5

Similar Publications

A Multifunctional Synergistic Solar-Driven Interfacial Evaporator for Desalination and Photocatalytic Degradation.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China.

The scarcity of freshwater resources and the treatment of dye wastewater have emerged as unavoidable challenges that need to be addressed. The combination of solar-driven interfacial evaporation, photocatalytic degradation, and superhydrophobic surface provides an effective approach for seawater desalination and the treatment of organic dyes. In this study, we fabricated a multifunctional synergistic solar evaporator by depositing cupric oxide nanoparticles onto polypyrrole (PPy) coating and subsequently modified it with a hydrophobic agent successfully.

View Article and Find Full Text PDF

Defect-Mediated Crystallization of the Particulate TiO Photocatalyst Grown by Atomic Layer Deposition.

J Phys Chem C Nanomater Interfaces

January 2025

Surface Science Laboratory, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland.

Nanopowders or films of pure and mixed oxides in nanoparticulate form have gained specific interest due to their applicability in functionalizing high-surface-area substrates. Among various other applications, our presented work primarily focuses on the behavior of TiO as a photocatalyst deposited by atomic layer deposition (ALD) on a quartz particle. The photocatalytic activity of TiO on quartz particles grown by ALD was studied in terms of ALD growth temperature and post-treatment heating rate.

View Article and Find Full Text PDF

The rapid growth in the global population has led to increased environmental pollution and energy demands, exacerbating the issue of environmental contamination. This contamination is significantly impacted by various types of pesticides found in water sources, which pose serious health risks to humans, animals, and aquatic ecosystems. In response, extensive research into water treatment technologies has been conducted, focusing on efficient methods to remove these pollutants, with advanced oxidation processes and the utilization of tungsten trioxide (WO) as a photocatalyst showing promising results.

View Article and Find Full Text PDF

Anisotropically Epitaxial P-N Heterostructures Actuating Efficient Z-Scheme Photocatalytic Water Splitting.

Small

January 2025

Key Laboratory of Eco-chemical Engineering, International S&T Cooperation Foundation of Eco-chemical Engineering and Green Manufacture, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.

Crafting anisotropically epitaxial p-n heterostructures with Z-scheme charge transmission is a promising avenue toward excellent photocatalytic efficiency, yet the large lattice mismatch and diverse crystal growth habits between components have often arisen as a big challenge to this goal. Here, anisotropically epitaxial p-n heterostructures with 19.8% lattice mismatch are obtained via a dynamics-mediated seeded growth tactic under reaction temperature as low as 60 °C.

View Article and Find Full Text PDF

Insight into photocatalytic CO reduction on TiO-supported Cu nanorods: a DFT study on the reaction mechanism and selectivity.

Phys Chem Chem Phys

January 2025

State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.

Photoreduction of CO into hydrocarbons is a potential strategy for reducing atmospheric CO and effectively utilizing carbon resources. Cu-deposited TiO photocatalysts stand out in this area due to their good photocatalytic activity and potential methanol selectivity. However, the underlying mechanism and factors controlling product selectivity remain less understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!