In the current study, we have designed and prepared a series of quinoxaline-based compounds, which were derived from -phenylenediamine. Among them, compounds 5m-5p displayed good to moderate antibacterial activity with MICs of 4-16 μg mL against , 8-32 μg mL against , 8-32 μg mL against MRSA and 4-32 μg mL against , respectively. Compound 5p, identified as a potent broad-spectrum antibacterial agent, demonstrated the strongest inhibitory effects against a range of bacterial strains and low cytotoxicity, thereby warranting further investigation. Compound 5p not only demonstrated the ability to disperse established bacterial biofilms but also induced a slower development of bacterial resistance compared to norfloxacin. Moreover, bactericidal time-kill kinetic studies revealed that at a high concentration of 3MIC, compound 5p was capable of directly killing MRSA cells. The subsequent postcontact effect (PCE) results showed that the growth rate of viable bacteria (MRSA) was greatly impacted and did not recover in less than 24 hours, even after antibacterial agent 5p was removed. The drug-like properties and ADME prediction exhibited that 5m-5p obeyed Lipinski's rule of five and therefore presumably maintained moderate to good bioavailability and human intestinal absorption rate when administered orally. Mechanistic investigations have elucidated that compound 5p exerted its antibacterial effect by compromising the structural integrity of bacterial cell membranes, resulting in the leakage of intracellular constituents and ultimately causing bacterial demise. Further studies have demonstrated that 5p exhibited potent antibacterial efficacy against MRSA in murine corneal infection models, particularly at elevated concentrations. The current dataset has also been meticulously analyzed to delineate the structure-activity relationships (SARs) of the synthesized compounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577936 | PMC |
http://dx.doi.org/10.1039/d4md00670d | DOI Listing |
Macromol Biosci
January 2025
Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering (FEQ), Albert Einstein Avenue, 500, Campinas, São Paulo, 13083-852, Brazil.
Annually, thousands of individuals suffer from skin injuries resulting from trauma, surgeries, or diabetes. Inadequate wound treatment can delay healing and increase the risk of severe infections. In this context, a promising synthetic polymer with potent antimicrobial properties, Poly{2-[(methacryloyloxy)ethyl]trimethylammonium chloride} (PMETAC), is synthesized and crosslinked with N,N'-Methylenebis(acrylamide) (BIS) in the presence of Chitosan (CH), a natural, biocompatible polysaccharide that promotes cell regeneration and provides additional beneficial properties.
View Article and Find Full Text PDFPhytother Res
January 2025
College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.
Bacterial canker is a devastating disease in kiwifruit production, primarily caused by pv. . In this study, a strain of named JIN4, isolated from a kiwifruit branch, showed antagonistic activity.
View Article and Find Full Text PDFDrugs must accumulate at their target site to be effective, and inadequate uptake of drugs is a substantial barrier to the design of potent therapies. This is particularly true in the development of antibiotics, as bacteria possess numerous barriers to prevent chemical uptake. Designing compounds that circumvent bacterial barriers and accumulate to high levels in cells could dramatically improve the success rate of antibiotic candidates.
View Article and Find Full Text PDFUnlabelled: Despite recent advances, the regulation of anticancer and antimicrobial bioactive compound (AABC) production by leukocytes remains poorly understood. Here, we demonstrate that inactivation of the DNA- and RNA-based Teazeled receptors of the Universal Receptive System in human leukocytes generated so called "Leukocyte-Tells," which showed enhanced AABC production. Comprehensive analysis of the AABCs produced by Leukocyte-Tells based on LC/MS identified 707 unique or differentially produced peptide or non-peptide metabolites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!