Rapid restoration of blood flow is critical in treating acute ischemic stroke. Current fibrinolytic therapies using tissue plasminogen activator (tPA) are limited by low recanalization rates and risks of off-target bleeding. Here, we present a strategy using tPA immobilized on micrometer-scale beads to enhance local plasmin generation. We synthesized tPA-functionalized beads of varying sizes (0.1 μm and 1.0 μm) and evaluated their efficacy. assays demonstrated that 1.0 μm tPA-beads generated higher plasmin generation compared to free tPA and 0.1 μm beads, overcoming antiplasmin inhibition and promoting a self-propagating wave of fibrinolysis. In a murine model of acute ischemic stroke, intravenous administration of 1.0 μm tPA-beads at doses nearly two orders of magnitude lower than the standard free tPA dose led to rapid and near-complete thrombus removal within minutes. This approach addresses kinetic and transport limitations of current therapies and may reduce the risk of hemorrhagic complications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580863 | PMC |
http://dx.doi.org/10.1101/2024.11.06.621942 | DOI Listing |
Front Pharmacol
December 2024
Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Introduction: In the last decades, the recombinant tissue plasminogen activator alteplase has been the standard fibrinolytic treatment of acute myocardial infarction, pulmonary embolism, and acute ischemic stroke. An optimized version of alteplase, tenecteplase, has been developed by exchanging six amino acids to increase half-life, achieve higher fibrin selectivity and increase resistance to plasminogen activator inhibitor-1. Meanwhile, several products containing tenecteplase exist.
View Article and Find Full Text PDFJ Thromb Haemost
January 2025
Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.
Background: Blood clot formation, triggered by vascular injury, is crucial for haemostasis and thrombosis. Blood clots are composed mainly of fibrin fibres, platelets and red blood cells (RBCs). Recent studies show that clot surface also develops a fibrin film, which provides protection against wound infection and retains components such as RBCs within the clot.
View Article and Find Full Text PDFRes Pract Thromb Haemost
November 2024
Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA.
Background: Anticoagulants prevent the formation of potentially fatal blood clots. Apixaban is a direct oral anticoagulant that inhibits factor (F)Xa, thereby impeding the conversion of prothrombin into thrombin and the formation of blood clots. Blood clots are held together by fibrin networks that must be broken down (fibrinolysis) to restore blood flow.
View Article and Find Full Text PDFFEBS Open Bio
December 2024
Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil.
Pathogenic Leptospira is the etiological cause of the zoonotic life-threatening infection called leptospirosis. The disease is spread worldwide with higher risk in tropical regions. Although leptospirosis represents a burden to the health of humans and animals, the pathogenic mechanisms of Leptospira infection are yet to be clarified.
View Article and Find Full Text PDFRes Pract Thromb Haemost
October 2024
Department of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands.
Background: α2-Antiplasmin (A2AP) deficiency is a rare and often unidentified disorder characterized by increased fibrinolysis and subsequent bleeding. Global hemostasis assays may increase insight into the altered coagulation and fibrinolysis in these patients.
Objectives: To explore thrombin and plasmin generation profiles in A2AP-deficient patients, corresponding A2AP activity levels and associated bleeding phenotypes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!